Optimization: introduction

Convex Optimization 101

Convex optimization

Convex sets

The underlying space is a vector space $V$ unless otherwise stated.

Convex cones

Affine sets

The intersection of an arbitrary collection of convex, affine, or conical sets is convex, affine, conical, respectively.

Generators

Relative interior

Most constraint sets in optimization does not have an interior, e.g, probability simplex. It is useful to define the interior relative to the affine hull: $$ \text{relint}C = \{\mathbf{x}\in C: (\exists r>0) B(\mathbf{x}, r) \cap \text{aff}C \subset C \} $$

Convex functions

Jensen's inequality

First-order condition (supporting hyperplane inequality)

Second-order condition

Epigraph

Separating hyperplane theorem

Let $A$ and $B$ be two disjoint nonempty convex subsets of $\mathbb{R}^n$. Then there exist a nonzero vector $\mathbf{v}$ and a real number $c$ such that $$ \mathbf{a}^T\mathbf{v} \le c \le \mathbf{b}^T\mathbf{v}, \quad \forall\mathbf{a} \in A,~ \forall\mathbf{b} \in B . $$ That is, the hyperplane $\{\mathbf{x}\in\mathbb{R}^n: \mathbf{x}^T\mathbf{v} = c\}$ normal to $\mathbf{v}$ separates $A$ and $B$.

If in addition both $A$ and $B$ are closed and one of them is bounded, then the separation is strict, i.e., there exist a nonzero vector $\mathbf{v}$ and real numbers $c_1$ and $c_2$ such that $$ \mathbf{a}^T\mathbf{v} < c_1 < c_2 < \mathbf{b}^T\mathbf{v}, \quad \forall\mathbf{a} \in A,~ \forall\mathbf{b} \in B . $$

Thus there exists a hyperplane that strictly separates $(y, \zeta)$ and $\text{epi}\varphi$ in the above plot if $\varphi$ is closed. (why?)

Sublevel sets

Operations that preserve convexity

  1. (Nonnegative weighted sums) If $f$ and $g$ are convex and $\alpha$ and $\beta$ are nonnegative constants, then $\alpha f + \beta g$ is convex, with $\text{dom}f \cap \text{dom}g$.

    • Extension: If $f(\mathbf{x},\mathbf{y})$ is convex in $\mathbf{x}$ for each fixed $\mathbf{y} \in \mathcal{A}$, and $w(\mathbf{y})\ge 0$ for all $y\in\mathcal{A}$, then the integral $g(\mathbf{x}) = 􏰠 \int_{\mathcal{A}} w(\mathbf{y})f(\mathbf{x},\mathbf{y})d\mathbf{y}$ is convex provided the integral exists.
  2. (Composition with affine mapping) If $f$ is convex, then composition $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ of $f$ with an affine map $\mathbf{x}\mapsto \mathbf{A}\mathbf{x} + \mathbf{b}$ is convex, with $\text{dom}g=\{\mathbf{x}:\mathbf{Ax}+\mathbf{b}\in\text{dom}f\}$.

  3. (Pointwise maximum and supremum) If $f_i$ is convex for each fixed $i=1,\dotsc,m$, then $g(\mathbf{x}) = \max_{i=1,\dotsc,m} f_i(\mathbf{x})$ is convex, with $\text{dom}g = \cap_{i=1}^m\text{dom}f_i$.

    • Extension: If $f(\mathbf{x},\mathbf{y})$ is convex in $x$, then $g(\mathbf{x}) = \sup_{\mathbf{y}\in\mathcal{A}}f(\mathbf{x},\mathbf{y})$ is convex, with $\text{dom}g=\{\mathbf{x}:(\forall\mathbf{y}\in\mathcal{A})(\mathbf{x},\mathbf{y})\in\text{dom}f, \sup_{\mathbf{y}\in\mathcal{A}} f(\mathbf{x},\mathbf{y})<\infty\}$.
  4. (Composition) For $h:\mathbb{R}\to\mathbb{R}\cup\{\infty\}$ and $g:V\to\mathbb{R}\cup\{\infty\}$, if $h$ is convex and nondecreasing, and $g$ is convex, then $f = h \circ g$ is convex, with $\text{dom}f = \{\mathbf{x}\in\text{dom}g: g(\mathbf{x})\in\text{dom}h\}$.

  5. (Paritial minimization) If $f(\mathbf{x},\mathbf{y})$ is jointly convex in $(\mathbf{x},\mathbf{y})$, then $g(\mathbf{x}) = \inf_{\mathbf{y}\in C} f(\mathbf{x},\mathbf{y})$ is convex provided it is proper and $C$ is nonempty convex, with $\text{dom}f = \{\mathbf{x}: (\exists\mathbf{y}\in C)(\mathbf{x},\mathbf{y})\in\text{dom}f\}$ (projection).

  6. (Perspective) If $f(\mathbf{x})$ is convex and finite, then its perspective $g(\mathbf{x}, t)=t f(t^{-1}\mathbf{x})$ is convex, with $\text{dom}g=\{(\mathbf{x},t): t^{-1}\mathbf{x}\in\text{dom}f,~ t>0\}$.

Examples