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Abstract. This paper informs a statistical readership about Artificial
Neural Networks (ANNs), points out some of the links with statistical
methodology and encourages cross-disciplinary research in the directions
most likely to bear fruit. The areas of statistical interest are briefly out-
lined, and a series of examples indicates the flavor of ANN models. We
then treat various topics in more depth. In each case, we describe the
neural network architectures and training rules and provide a statistical
commentary. The topics treated in this way are perceptrons (from single-
unit to multilayer versions), Hopfield-type recurrent networks (including
probabilistic versions strongly related to statistical physics and Gibbs
distributions) and associative memory networks trained by so-called un-
superviszd learning rules. Perceptrons are shown to have strong as-
sociations with discriminant analysis and regression, and unsupervized
networks with cluster analysis. The paper concludes with some thoughts
on the future of the interface between neural networks and statistics.

Key words and phrases: Artificial neural networks, artificial intelli-
gence, statistical pattern recognition, discriminant analysis, nonpara-
metric regression, cluster analysis, incomplete data, Gibbs distributions.

1. INTRODUCTION

Given an appropriate notational convention, Fig-
ure 1 gives a diagrammatic representation of a mul-
tiple linear regression model in which the expected
response, y, is related to the values x = (x1,...,xp)
of covariates according to

p
y=Wwo+ Z Ww;x;.
Jj=1

The notational convention is that the circle repre-

sents a computational unit, into which the x;’s are
* fed and multiplied by the respéctive w;’s. The re-
sulting products are added and then a further wy is
added to provide the eventual output. In this way,
we create a neural network representation of a very
familiar statistical construct, because Figure 1 is a
version of a standard neural network called the sim-
ple or single-unit perceptron.
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In general, neural networks are (the mathemat-
ical models represented by) a collection of simple
computational units interlinked by a system of con-
nections. The number of units can be very large and
the connections intricate.

Neural networks are used for many applications
of pattern classification and pattern recognition:

e Speech recognition and speech generation

o Prediction of financial indices such as currency
exchange rates

e Location of radar point sources

e Optimization of chemical processes

e Target recognition and mine detection

¢ Identification of cancerous cells

¢ Recognition of chromosomal abnormalities

e Detection of ventricular fibrillation

e Prediction of re-entry trajectories of spacecraft

e Automatic recognition of handwritten charac-
ters

e Sexing of faces

e Recognition of coins of different denominations

e Solution of optimal routing problems such as
the Traveling Salesman Problem

e Discrimination of chaos from noise in the pre-
diction of time series
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F1c. 1. A simple (single-unit) perceptron.

In addition, we use neural networks in robotics
and in computer vision, as in the creation of a net-
work that responds to certain visual stimuli in a way
similar to the brain. Such neurological-type exam-
ples are, as yet, less common than the more prosaic
applications listed in the previous paragraph. This
is in spite of the fact that the initial stimulus for
the development of ANN models was an effort to un-
derstand more deeply how the brain works and to
construct a mechanism that would function in the
same way.

The aim of artificial intelligence and neuroscience
was to require the construction of a system that
could compute, learn, remember and optimize in
the same way as a human brain! It would not be
sufficient to have a black box that came up with
the right answers; rather, the answers had to be
achieved by “human” mechanisms. It is generally
accepted that this holy grail is still distant, and the
pursuit continues. The explosive growth of activity
in neural networks has, however, occurred because
the frameworks that seemed reasonable prototypes
for neurological modeling have been adopted and
further developed as computational tools for many
other fields. In particular, there are certain areas
of this topic that are worthy of close attention from
statisticians.

This paper is structured as follows: Section 2
gives some general reasons why statisticians should
be interested in at least some of the neural-network
research and, conversely, why neural-network spe-
cialists should be aware of certain statistical re-
search. Section 3 provides the flavor of the topic

through a series of examples. Sections 4 through
6 look at three broad areas in more depth. In each
area, we outline the basic neural-network methodol-
ogy, in terms of network architectures and training
algorithms, and then present a commentary on the
most important statistical points of contact. In par-
ticular, the commentary sections, while giving broad
indications of the interface, include fairly detailed
references to the relevant neural-network literature
and, to a lesser extent, to the corresponding statis-
tical literature. Section 4 looks at the feed-forward
networks known as perceptrons, which are usually
trained by a so-called supervized-learning procedure
and which are used in contexts strongly related to
discriminant analysis, regression and time-series
analysis. Section 5 considers Hopfield-type recur-
rent networks: probabilistic versions, such as the
Boltzmann machines, have many points of contact
with statistical physics and Markov random fields,
through their association with Gibbs distributions.
Section 6 discusses networks trained by unsuper-
vized learning, emphasizing their relationship with
cluster analysis. Section 7 discusses the future of
common interests in neural-network and statistical
research. Important areas include methods for de-
signing network architecture (model choice), meth-
ods for assessing performance, methods for parame-
ter estimation and the identification of problem ar-
eas in which the neural-network approach is neces-
sary.

The literature on ANNs is vast and is expanding
rapidly. We found the texts by Muller and Reinhardt
(1990) and Hertz, Krogh and Palmer (1991) and
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the review by Hinton (1989) of -particular interest.
Johnson and Brown (1988) provide an informal and
readable account of the history, personalities and
possible future directions of the field. Important,
more specialized monographs include those of Min-
sky and Papert (1969, 1988), Rumelhart, McClel-
land, and the PDP Research Group (1986) and Amit
(1989). In addition, there are increasingly many
compilations, usually representing published con-
ference proceedings. These include Anderson and
Rosenfeld (1988), Aleksander (1989), Antognetti and
Milutinovic (1991), Eckmiller (1990), Eckmiller and
Von Der Malsburg (1988), Eckmiller, Hartmann and
Hauske (1990), Kohonen et al., (1991) and Gelenbe
(1991b). One such volume (Sethi and Jain, 1991)
makes a specific claim to try to draw together the
fields of ANN research and statistical pattern recog-
nition, and Hunt et al. (1992) alerts the control
engineering community to the relevance of neural
networks to their subject.

Several research journals are dedicated to the
field, but the total coverage includes dozens of other
journals in the literatures of engineering, theoret-
ical biology, pattern recognition, artificial intelli-
gence, computer science, theoretical physics, ap-
plied mathematics and, embryonically, statistics.

2. WHY SHOULD STATISTICIANS BE
INTERESTED?

Statisticians should become aware of, and in-
volved in, research related to neural networks on
several grounds.

2.1 Neural Networks Provide a Representational
Framework for Familiar Statistical Constructs

Many ideas and activities familiar to the statis-
tician can be expressed in neural-network notation.
Our paper started with one simple case (which we

will discuss further in Section 4.3), but they in-

clude regression models from simple linear regres-
sion to projection pursuit regression, nonparamet-
© ric regression (Specht, 1991), generalized additive
models and others (see Section 4.3.2). Also included
are many approaches to discriminant analysis such
as logistic regression, Fisher’s linear discriminant
function (LDF) and classification trees, as well as
methods for density estimation of both parametric
and nonparametric types: the former is exemplified
by finite mixture models (Tr&vén, 1991), and the lat-
ter is exemplified by kernel-based density estima-
tion (Specht, 1990). Finally, we can include graph-
ical interaction models. We refer to the statistical
literature on these topics during the text.

In most of these cases, the statistician may re-
act to the fact that familiar entities can be given

a (usually pictorial) representation by adopting
neural-network notation with a “so what?” atti-
tude. However, the relationship is clearly introduc-
ing the neural-network community to certain statis-
tical ideas, and the points of contact in certain ar-
eas, nonlinear regression, in particular, are leading
to important research under some of the following
headings.

2.2 Many Common Problems of Modeling and
Inference Have Both Statistical and
Neural-Network Treatments

Even for the small list of applications in Section 1,
statisticians will feel that they should have some
technique in their own armory to carry out a suit-
able analysis. Given a pattern classification prob-
lem and a training set of previously classified items,
the statistician would probably try to construct an
appropriate discriminant function to classify future
items. The simplest version of this for the 2-class
problem is Fisher’s LDF (Fisher, 1936; Hand, 1981),
in which the classification decision depends on the
sign of
1) wlx +w,
where x is the vector of indicants or feature vari-
ables corresponding to the new item and w and w
are, respectively, a vector of coefficients and a scalar.
Fisher’s LDF corresponds to a particular formula for
w and wy expressed in terms of the training data. In
the neural-network literature, linear discriminant
functions such as (1) are also proposed, represent-
ing the single-unit perceptron alluded to in Section
1. The practical difference between this device and
the statistical version lies in the way the training
data are used to dictate the values used for w and
wo. They will almost never correspond to Fisher’s
LDF, and it is natural to enquire about the extent
to which the two methods differ; see Section 4.1 for
further details.

Discriminant analysis can be thought of as a spe-
cial type of regression or prediction problem with an
indicator variable or vector as the response. Many
of the practical problems dealt with using neural
networks concern regression or prediction in a more
general sense. It turns out that there are two main
aspects to the treatment of any given practical prob-
lem:

(i) specifying the architecture of a suitable net-

work; and
(ii) training the network to perform well with ref-
erence to a training set.
When, as in the context of discriminant analysis, the

training set consists of previously classified items,
(ii) is called a supervized learning procedure.
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To the statistician, this is equivalent to

(i) specifying a regression model; and
(ii) estimating the parameters of the model given
a set of data.

The differences between the two approaches lie
in the ways in which (i) and (ii) are handled. The
neural-network specialist will resolve (i) by con-
structing a network of nodes and links from which
a regression function can be written down, whereas
the statistician usually extracts the regression func-
tion as the mean of a conditional probability model
for the response, given the covariates. Whichever
approach is taken, (i) clearly poses questions of
model choice. As far as (ii) is concerned in the
neural-network literature, the network is adjusted
to predict the responses of the training data as well
as possible. The statistician, however, will typically
resort to some general technique, such as maximum
likelihood estimation, Bayesian inference or some
nonparametric approach. In some cases, the neural-
network recipe turns out to be equivalent to maxi-
mum likelihood analysis if a familiar error struc-
ture is assumed. However, the traditional neural-
network approach proposes an optimality criterion
without any mention of ‘random’ errors and proba-
bility models.

The most common neural-network approach to
regression-type problems is multilayer perceptrons
and generalizations of single-layer perceptrons.
They are discussed in more detail in Section 4.2 and
are compared with statistical competitors. These
competitors are virtually all representable as mul-
tilayer perceptrons; however, they are typically com-
paratively simple in form, in contrast to some of the
very intricate networks that have been constructed,
after considerable time and effort, to treat specific
applications. For an example, see the discussion
of the recognition of hand-written Zip-code charac-
ters in Example 3.2. It is important to investigate
to what extent ‘standard’ prescriptions can compete
with custom-built networks, to look critically at ap-
proaches to network design (model choice) and to
compare the different approaches to the (usually)
heavy numerical optimization exercise required to
train the networks in stage (ii) above.

As with discriminant analysis and regression, an-
other activity common to the two research commu-
nities is what statisticians refer to as cluster anal-
ysis: a set of multivariate observations have to be
organized or, in a sense, organize themselves into a
number of mutually disparate, but internally com-
pact, groups or clusters. The number of clusters
may or may not be prescribed.

One way to think of cluster analysis is as a dis-
criminant analysis but without the knowledge of the

true class identifiers for the training set. In the
terminology used in the neural-network literature,
this represents unsupervized learning, and we shall
discuss a few networks that self-organize using un-
supervized learning rules to recognize certain types
of pattern.

2.3 Statistical Techniques Are Sometimes
Implementable Using Neural-Network
Technology

We remarked in Section 2.2 that Fisher’s LDF
provided one linear rule for 2-class discriminant
analysis. The neural-network community have
their own ways of constructing linear rules, but
they also have a particular method for comput-
ing the Fisher’s LDF itself (Kuhnel and Travan,
1991). In addition, there are neural-network pro-
cedures for computing quadratic discriminant rules
(Lim, Alder and Hadingham, 1992) for calculat-
ing principal components (Oja, 1982; Sanger, 1989)
for approximating Bayesian probabilities (Richard
and Lippmann, 1992) and even for approximating
the rejection region for the elementary likelihood-
ratio test between two simple hypotheses (Bas and
Marks, 1991). The statistical community might ex-
press surprise that there is any need for a new
approach to these familiar procedures in applied
matrix algebra, in view of the existence of well-
tried packages for eigenanalysis. However, stan-
dard packages impose a limit on the size of matrix
that can be treated, and some neural-network ap-
plications involve data of very high dimension.

2.4 Some Neural Networks Have Probabilistic
Elements

In most applications of neural networks that gen-
erate regression-like output, there is no explicit
mention of randomness. Instead, the aim is func-
tion approximation. Although the optimality cri-
terion used to choose the approximant may be a
least-squares criterion or a cross-entropy function,
there is no thought that this criterion should be in-
terpreted as a log-likelihood function.

However, some networks do have explicit prob-
abilistic components in their definition. Of par-
ticular interest are probabilistic versions of Hop-
field networks, and developments thereof, such as
Boltzmann machines. We will discuss these in Sec-
tion 5.2. It is often possible to identify such net-
works with certain exponential family distributions
(Gibbs/Boltzmann distributions). There is relevant
material in the statistical physics literature as well
as in the modern statistical literature related to ap-
plications of simulated annealing, Gibbs sampling



6 B. CHENG AND D. M. TITTERINGTON

and generalizations thereof and the information ge-
ometry associated with S. Amari and others.

2.5 An Increasing Effort to Embed Neural
Networks in General Statistical Frameworks

There is an accelerating trend in neural-network
literature to apply general statistical methodology.
In some cases, the discussion is specific to the exam-
ple: in speech recognition, for instance, there is cur-
rent activity in comparing and blending multilayer
perceptrons and hidden Markov (chain) models
(Bourlard, 1990; Bourlard and Morgan, 1991; Bri-
dle, 1992; Bengio et al., 1992). However, more gen-
eral work exists, particularly in applying Bayesian
formulations and methodology in the modeling of
neural networks. Representative references are
Buntine and Weigend (1991) and MacKay (1992a,
b). See Section 4.3.5 for a more detailed discussion.

3. ELEMENTAL ASPECTS OF ARTIFICIAL
NEURAL NETWORKS

3.1 The Neurological Origins of ANN Research

It is a mere half-century since the publication
of arguably the first paper on ANN modeling by
McCulloch and Pitts (1943). The early motivation
was in artificial intelligence. It sought to discover
why the human brain, although comparatively in-
adequate in terms of speed of serial computation,
was spectacularly superior to any conceivable von
Neumann computer in performing many thought
processes or cognitive tasks. Modern microchips
carry out, in nanoseconds, elementary operations for
which the human brain requires milliseconds; yet
the brain has little difficulty in correctly and imme-
diately recognizing familiar objects from unfamiliar
angles, an operation that would severely tax conven-
tional computers. The crucial difference, therefore,

lies not in the essential speed of processing but in

the organization of the processing.

A key is the notion of parallelism or connection-
~ism. The processing tasks in.the brain are dis-
tributed among about 10! — 10'2 elementary nerve
cells called neurons. Each neuron is connected to
many others, can be activated by inputs from else-
where and can likewise stimulate other neurons.
The brain very quickly achieves complex tasks be-
cause of the vast number of neurons, the complex
interneuron connections and the massively parallel
way in which many simple operations are carried
out simultaneously.

Other important characteristics of neurologi-
cal activity are those of adaptability and self-
organization. As we broaden our experience, our
brain has to adapt in order to assimilate new knowl-

edge and perspectives, and aspects of the neural
structure have to organize themselves accordingly.

Research in artificial intelligence aims to discover
and emulate the precise structure and mode of op-
eration of the neural network in a real brain. This
will involve expertise in psychology, neuroscience
and computer science. Here we exploit, in nonneu-
rological contexts, the structure of a large number of
simple computational units interlinked in an appro-
priate way and with a well-defined mechanism for
learning and adapting itself from experience, that
is, from data.

3.2 The Structure of ANN Models

A basic feature of ANN models is a representation
of a single neuron. Figure 2a provides a schematic
diagram of a real neuron: its main features are the
nucleus within the cell body (or soma), the axon and
the nerve fibres (dendrites) leading from the soma.
The axon sprouts root-like strands, each one ter-
minating at a synapse on a dendrite or cell body
of another neuron. A typical axon generates up to
103 synaptic connections with other neurons, and it
is clear that the global system of connections in a
brain is vastly complicated.

Figure 2b contains an even more crude represen-
tation of the neuron. This reveals the neural sys-
tem as a directed graph involving nodes (the neu-
ron cell bodies), sometimes called units, and intern-
odal connections or links (the synaptic links). Sig-
nals are transmitted within pairs of units; sets of
nodal outputs are created on the basis of inputs from
other units; and the whole system evolves through
time. A seminal step, taken by McCulloch and Pitts
(1943), was to conceive a simple artificial neuron
with the following structure (Figure 2c).

The McCulloch-Pitts neuron receives inputs from
each of a set of other units that provide binary (+1)

inputs x = (xy,...,%p) and output
p

(2) Yy =8gn ZLijj+wo .
j=1

The McCulloch-Pitts neuron is just a “binary” ver-
sion of the regression net in Figure 1. In (2), the
{wj,j =1,...,p} are called connection weights, con-
nection strengths or connectivities; wy is a bias term
and sgn(-) denotes the sign function. In the trivial
regression net of Figure 1, the connection weights
are regression slope parameters and the bias is the
intercept. In neurological terminology, the neuron
fires (y = +1) or fails to fire (y = —1) accordingly as

p
ijxj +wp > 0(<0).
j=1
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FiG. 2a. Schematic diagram of real neuron.
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F16. 2b. Elemental version of 2a.

In general, the input-output relationship at a neu-
ron takes the form

3) y= f(¢(xa w))’

where f and ¢ are prescribed functional forms, x rep-
resents the inputs (not necessarily binary) and w are
the connection weights associated with connections
leading into the unit. The function f is called the
activation function.

Although there seems to be a redundancy in (3) in
using both f and ¢, it is helpful to use this notation.
Usually, ¢ is linear as in (2), and f is chosen from a
small selection of functions, including the following:

o f(u) = sgn(u) = f,(u), the hard limiter nonlin-
earity, produces binary (+1) output.

o f(u) = {sgn(u) + 1}/2 produces binary (0/1) out-
put.

o f(u) = (1+e7*)~1 = f,(u), the sigmoidal (logistic)
nonlinearity, produces output between 0 and 1.

¢ f(u) = tanh(z) produces output between —1 and
1.

e f(u) = (u), produces a non-negative output.

o f(u) = +1 with probability f;(u) and f(u) = -1
with probability 1 — f;(u) provides random bi-
nary (+1) output via logistic regression (Bridle,
1990).

e f(u) = u is of course linear, as in our very first
example in Section 1.

In practice, the units will usually have more than
one output strand. The art of network construction
in ANNSs is to use simple individual units but to link
together enough of them and in a suitable manner
to solve a particular problem.
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F1G. 2c. The McCulloch-Pitts neuron.

y=sgn (x,-x ),

y=sgn (x,-x ),

X,

F16.3. A network for finding the larger of two positive numbers, given eventually by z = { %(xl —X9)s+ % (x1+29)+ % (xg—21)+ }+ = max(xq, x2).

3.3 Some lllustrative Examples

Example 3.1.  This first example, taken from
the helpful review by Lippmann (1987), is trivial
and non-statistical; but it helps to reinforce the no-
tation. The network in Figure 3 identifies which of

two nonnegative numbers is the larger, as well as
displaying the number itself. The “inputs” are the
two numbers (x;,x2), and there are three “output”
nodes at the top: one fires (y; = 1) if x; > x5, the
second fires (y; = 1) if x3 > x; and the third displays
2z = max(x;,x2). In the middle, there are two more
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nodes, called hidden nodes with outputs (vy,vs),
that contribute towards the calculation. Figure 3
shows the network architecture, suitable values for
the connection weights, the activation functions re-
quired at the different nodes and the progression
of the calculation through the network. Solid discs
correspond to units with hard-limiter nonlinearities
(f(u) = sgn(u) = f,(x)) and open circles to units with
nonlinearities f(z) = (u),. Hidden units, which have
no direct physical meaning and are, therefore, some-
what analogous to latent variables, are a feature of
most practical ANN models.

In simple problems like this, we can both con-
struct a network and assign activation functions and
weights that do the required job perfectly. In most
applications, however, this is not feasible, and the
network is used only as an approximation in the
same spirit as statistical modeling. This naturally
complicates the issues of designing the architecture
and activation functions and choosing the associated
parameters (the connection weights and biases).

Example 3.2. A network for Zip-code recognition.
As an example of a much larger network, we con-
sider the one developed by Le Cun et al. (1989) for
recognizing hand-written Zip-codes. The training
data consisted of 7291 hand-written Zip-code dig-
its preprocessed to fit a 16 x 16 pixel image with
grey levels in the range —1 to +1. In this case, the
dimensionality of each input, x, is p = 256.

The network architecture, depicted in Figure 4,
consists of an input layer of 256 units (laid out, in
view of the context, as a 16 x 16 array) leading up
through three layers of hidden units to an output
layer of 10 units that corresponds to the desired dig-
its {0,1,...,9}. The essence of the construction of
the three hidden layers {H;,Hs,H3} and the inter-
layer connections is as follows (for more detail, see
Le Cun et al., 1989):

1. Layer H,. This layer contains 768 units ar-
ranged in 12 8 x 8 squares. Each unit in each
of the 8 x 8 squares receives inputs from a 5 x5
square receptive field within the input image.
The receptive fields leading to adjacent units in

" the H,-layer are two pixels apart so that the in-
put image is undersampled and some informa-
tion about position is lost. All units in a given
8x 8 H;-square use the same connection weight
but have different biases. Thus, the H;-layer
acts as an array of feature detectors picking up
features without regard to position. The num-
ber of parameters involved in the (input — H;)
connections is clearly (25 x 12) + 768 = 1068.

2. Layer H,. This layer contains 12 4 x 4 squares
of units. The connections from H; to Hy are

similar in character to those from the input
layer to H;, and the Hs-squares are also de-
signed to detect features. Each Hj-unit com-
bines information from 5 x 5 squares, identi-
cally located in 8 of the 12 squares in H;. Thus,
200 H;-units contribute to the input of each Hs-
unit. As before, the sets of weights (but not the
biases) for all 16 units in a given 4 x4 square in
H, are constrained to be the same. Thus, asso-
ciated with the 192 H,-units, there are 12 x 200
connection weights and 192 biases: a total of
2592 free parameters.

3. Layer H3. Layer Hj is straightforward, con-
sisting of 30 units. The scheme of connections
is straightforward too, all H, units being linked
with all H3 units. (The two layers are fully con-
nected.) This results in (30x192)+30 = 5790 pa-
rameters. Layer Hj is, in turn, fully connected
to the output layer, requiring (10x30)+10 = 310
parameters.

Altogether, therefore, the network involves 1256
units, 63,660 connections and 9760 independent pa-
rameters! The part of the network above layer Hj
enables a flexible discriminant rule to be created
based on what are presumed to be useful classifica-
tion features created in the Hs-units.

This network represents a very highly parameter-
ized model, but the training data set was also large,
of the form {(x™,z"),r = 1,...,7291}, in which
each 2 represents 256 pixels and each z” is a 10-
dimensional indicator of the true digit. The network
belongs to the class of multilayer perceptrons, men-
tioned earlier in Section 2.2 and discussed in more
detail in Section 4.2, where the issue of training is
also described. When Le Cun et al. (1989) applied
the resulting discriminant rule to the training set,
only 10 (0.14%) of the 7291 images were misclassi-
fied. As usual, this is an unrealistically low error
rate so far as predicting future performance is con-

" cerned. When the rule was applied to a test set of

2007 further digits, 102 (5.0%) mistakes were made.

The level of performance of an ANN on the uni-
verse of possible data (not just on the training data)
is called its generalization ability; empirical assess-
ment normally requires a large test set of typical
cases. Generalization ability is impaired if the ANN
is overfitted to the training data, usually by allowing
too many free parameters. For the Zip-code prob-
lem Le Cun et al. (1990) further reduced the num-
ber of free parameters by a factor of about four and
achieved a substantial improvement in performance
on the test set.

Example 3.3. NETtalk (Sejnowski and Rosen-
berg, 1987). Figure 5 displays the architecture of
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10 output O
units

Layer Hj
(30 hidden

units)

Layer H,
12x4x4=192

hidden units)

Layer H;
12x8x8=768 N
hidden units)

9 fully connected
(300 links)

fully connected
(5760 links)

i 192 x (8x5x5)
=38400 links
(See text)

768 x 25
= 19200 links
(See text)

s

F16. 4. The network developed by Le Cun et al. (1989) for Zip-code recognition.

the NETtalk network designed to learn to speak
English. The network scans English text and, at
any instant, seven consecutive characters make up
the input. The corresponding output is a phoneme
code, subsequently transmitted to a speech genera-
tor, that represents the symbol at the middle of the
input window. There were 7 x 29 input units rep-
resenting indicators of the presence/absence in each
of the seven positions of members of the alphabet

of 26 letters and 3 punctuation characters. There
were 80 units in the single hidden layer and 26 out-
put units. As in Example 3.2, it is envisaged that
the hidden units create useful discriminant features
that are merged into a powerful classification rule
at the output layer. A training set of 1024 words
and their associated phoneme codings led to the cre-
ation of intelligible speech after 10 iterations of the
learning rule and to 95% accuracy after 50 itera-
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26 output phoneme

code units

(full connections)

80 hidden units

(full connections)

sl ¢

L 1Y

(& S

Inputs

Fic. 5. Structure of network used in NETtalk.

tions. The learning behavior resembled a child’s
early speech in that the first features apprehended
were the points of separation between words. Some
of the hidden units could be given interpretations,
for instance, as discriminators between vowels and
consonants. Again, note the analogy with latent
variables in statistics.

Generalization ability was assessed using a test
set, and 78% accuracy was achieved, representing
quite intelligible speech. If the network was “dam-
aged” by removing some hidden units, performance
was degraded a little but recovered after retrain-
ing (i.e., reestimating the remaining parameters).
Resistance to partial damage is an important prop-
erty of neural networks in contrast to serial com-
puting, in which a single small change or error
can have catastrophic consequences. Sophisticated
rule-based speech generators often out-perform ma-
chines such as NETtalk, but the latter does well in
view of its simplicity of construction and training.

Examples 3.2 and 3.3 are both examples of mul-
tilayer perceptrons of which there is a multitude
of further applications including medical prognosis
(Lowe and Webb, 1990). In fact, they are so com-
mon that the phrase “Artificial Neural Networks” is
often taken to be synonymous with “multilayer per-
ceptrons.” However, there are other types of net-
work architecture with important applications, and
we give a taste of these next.

Example 3.4. An associative (Hopfield) network
for digit recognition. The training set in Exam-
ple 3.2 contained many cases from each of the

ten underlying classes, corresponding to the digits
{0,1,...,9}. In associative memories, each class is
represented by an exemplar. When an observed pat-
tern, usually a partial or noisy version of an exem-
plar, is presented, the memory should identify the
correct uncorrupted exemplar. The concept underly-
ing such ANN models is to mimic the capacity of the
human brain to store a library of patterns and to be
able to associate one of them with a newly observed
pattern. The term content-addressable is also used
in that the observed pattern is identified (correctly,
one hopes) on the basis of its content.

Figures 6a and 6b display the results of the ap-
plication of a basic, deterministic, Hopfield network
(Hopfield, 1982) to digit recognition. The digits are
presented as 9 x 7 binary images; thus each pattern

_x is p-dimensional, where p = 63. The learning pro-

cess (i.e., the method of storing the exemplars in the
memory) and the rule for processing observed pat-
terns are described in Section 5.1. Here we merely
report some results.

Figure 6a shows the exemplars and the result of
presenting the pure exemplars to the trained net-
work. The digits {4,6,7} are correctly recognized
and 0 almost is, but the rest are not! Table 1 gives
the distances, in terms of the numbers of pixels on
which they disagree, between the final states and
the desired exemplars. It also shows how many it-
erations were required.

Figure 6b explores the robustness of the memory
when the pure 4 and 7 are distorted by error. The
colour of each pixel was changed, with probability
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FI1G. 6a. Performance of Hopfield network on pure exemplars.

TABLE 1
Some quantitative indices on the performance for Figure 6a: (-) denotes number of pixels different from exemplar; [-] denotes number of
iterations needed for convergence

Pure exemplar 0 1 2 3

4 5 6 7 8 9

Limit point @i aEe anMe M2l

(0) [0]

@[ O OO ani  ani(si

7 € {0(0.05)0.25}, independently of the other pixels.
Table 2 provides quantitative results as in Table 1.
" For more discussion of this example see Cheng and
Titterington (1994).

In Section 5, we will look at Hopfield networks
in more detail. In particular, we will reveal the re-
lationship between probabilistic versions and such
topics as spin-glass models, Gibbs distributions,
Markov chain Monte Carlo and the EM algorithm.

Example 3.5. Cluster analysis by adaptive reso-
nance theory (ART). In cluster analysis, it is un-
common for the number of clusters, let alone their
locations, to be specified beforehand. Instead, the
analysis uses a training set of (unclassified) items,

according to some unsupervized learning algorithm,
and allows the number of clusters to be determined
by the data. In adaptive resonance theory (ART)
(Carpenter and Grossberg, 1988) cluster centers are
created and are modified, and the associated clus-
ters grow as items in the training set are sequen-
tially incorporated. A new item is either assigned
to an existing cluster and the cluster center adapted
accordingly, or it becomes the center of a new clus-
ter if implausibly far from (that is, if it does not
“resonate” with) any existing cluster center.

Example 3.6. Representation of distributions us-
ing feature maps. Figure 7a shows a single-layer
network typical of simple versions of Kohonen’s self-
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F1G. 6b. Performance of Hopfield network on error-corrupted input.

TABLE 2
Some quantitative indices on the performance for Figure 6b: (-) denotes number of pixels different from exemplar; (-] denotes number of
iterations needed for convergence

T 0 0.05 0.1 0.15 0.2 0.25

Initial input: 4 0) 2) 2) 14) (11) (16)
Limit point 0) 0) 1] (0) [1] (25) [3] (28) [3] (32) [5]

Initial input: 7 0) (2) (8) (10) (12) (15)
Limit point 0) 0) 1] M (0) [1] (28) [3] (24) [5]

organizing feature maps. The inputs here are of
dimension p = 2, and there are full connections to
the output units. The aim is to display the main
features of the (frequency) distribution of input vec-
tors. A particular learning rule (see Section 6.1)
updates the weight vectors between the inputs and
the output units as input vectors are presented. Any
given input vector causes a particular output node
to fire, leading to changes in the weights along the
corresponding links and also, but usually to a lesser
degree, to changes in weights along links to neigh-
boring output nodes. There may also be lateral con-
nections between pairs of output nodes: excitatory
(positive weights) if the nodes are close, inhibitory
(negative weights) between somewhat more distant

nodes and, ultimately, as internodal distance in-
creases, of zero strength.

After the training phase, a plot can be drawn of
the weight pairs (one from each input link) associ-
ated with the output nodes. Figure 7b, analogous
to Figure 9.12 of Hertz, Krogh and Palmer (1991),
schematically shows the result of training an 8 x 8
output layer based on a very long sequence of bi-
variate observations uniformly distributed on, re-
spectively, a disc, a triangle and an L-shape. The
distribution of the input-to-output weight pairs, rep-
resented as the 64 mesh points in the plots, reflects
the uniformity.

Kohonen (1990) lists many applications of
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inputs

Fi1G. 7a. Kohonen network.

Fi16. Tb. Schematic performance on uniform data on various spaces.

this method, including representation of speech
phonemes and colours and imitation of both speech
(the Finnish phonetic typewriter) and handwriting.

In the following sections we describe more for-
mally some of the main types of network, the as-
sociated learning rules and the important areas of
common research interest with statistics.

4. MULTILAYER PERCEPTRONS

‘Networks are used in practice to process a set of
items, such as speech patterns or digits requiring
recognition or patients requiring diagnosis. Each
item is associated with a p-vector, x, of measurable
features and a target, z, which represents, for in-
stance, the indicator of the true speech pattern, digit
or disease category or a more general response. The
target, z, is often a vector. The network receives the
vector x as inputs and creates a (set of ) outputs, y,
as a predictor of the unknown 2. The “formula” for
y is a function of the network architecture, the set
of activation functions and all the parameters.

4.1 The Simple (single-unit) Perceptron
4.1.1 Architecture

The architecture of the single-unit perceptron is
that of Figure 1 or Figure 2¢c. A set of p input vari-
ables, x (now not necessarily binary), generate a bi-
nary output variable, y, through the formula

p
y=f (Z wjx; + wo) .

J=1

A neater version is obtained by creating the dummy
variable xy = 1, so that

14
y=rh (E wjxj) = fuwTx),

J=0

where w and x are now (p + 1)-dimensional. The
training data are denoted by D = {(x®,2"),r =
1,...N}, where {z} are the class indicators (1)
and 2 = {x}') : j=0,...,p} is the feature vector
corresponding to the rth observation.
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4.1.2 Training

The perceptron learning rule is a recursive al-
gorithm in which the weights are modified as the
training data are processed. Suppose that an obser-
vation (x,z) from the training set is to be incorpo-
rated and that y = y(w) denotes the (binary) predic-
tion for z, given x, on the basis of the current values
w for the weights and bias. Then, forj=0,...,p,w;
changes according to

4) w; — w; + Awj,
where
(5) Awj = 1z —y)x; = nbx;.

In (5) 6 is the error incurred by applying the current
rule to the new observation; since z and y are both
binary, w changes if, and only if, the current rule
misclassifies the new observation. The parameter
n(> 0) is called the learning rate; and the learning
rule, called the delta rule, has the flavor of a gra-
dient descent method for optimization as now indi-
cated.

Suppose we wish to minimize a function E(w).
Then the iterative step of the gradient descent algo-
rithm takes w; to w; + Awj, where

__OEw)
Bwj

k)

ij =

for some step-size 7 > 0. Suppose we now take

N N
1 ") T, N2 ") T
E(w)=§;(z' —x"Tw) =§e,(z',x' w),

and consider a recursive version of steepest descent
in which

Oer(w)
—p— =

(r) _ (T (r)
6wj "'](z X w)xj s

ij =

‘Then Aw; matches (5) with (z,y) = &, x"Tw) so
that (5) would be recursive-steepest-descent were y
given by xTw. See Widrow and Hoff (1960).

The single-unit perceptron convergence theorem
(Rosenblatt, 1962; Minsky and Papert, 1969, 1988)
essentially states that, if the two training sets of fea-
ture vectors, one corresponding to each of the two
classes, can be separated in RP by a hyperplane,
then the delta rule converges to give one such hy-
perplane in a finite number of steps. In practice,
this involves processing each member of the train-
ing set a number of times. Hyperplanes can also
be constructed that separate the training sets in a

prescribed optimal sense (Rujan, 1991; Wendemuth,
1993). Efron (1964) studied the working of the per-
ceptron when the training sets are not linearly sep-
arable.

The case of m (> 2) classes involves (m — 1) output
units that are fully connected to the inputs. Output
units are usually depicted in a layer, and the re-
sulting network is called the single-layer perceptron.
(The input layer is typically not counted.)

Publication of Rosenblatt (1962) led to a surge of
activity in view of the apparent power of single per-
ceptrons to learn, as established in the perceptron
convergence theorem. This was substantially de-
flated by Minsky and Papert (1969), who pointed
out that the scope for perceptrons was very lim-
ited. It was easy to identify elementary logical prob-
lems that single-layer perceptrons cannot solve. The
most famous of these is the XOR (“exclusive-or”)
problem of discovering whether or not two binary
variables are equal. Networks could be devized to
solve such problems, but there seemed to be no obvi-
ous learning rule until the work of Rumelhart, Hin-
ton and Williams (1986a, b) that we will discuss in
Section 4.2.2.

4.2 Multilayer Perceptrons (MLP)
4.2.1 Architectures

Multilayer perceptrons are far more flexible pre-
diction mechanisms. Figure 8 shows a 2-layer ver-
sion with a single output node and one layer of hid-
den units. Figure 5 showed another 2-layer percep-
tron and Figure 4 showed a 4-layer example. Other
ANN architectures consist of interlinked input, out-
put and hidden nodes, but the multilayer perceptron
has the following special features.

e The hidden nodes are arranged in a series of
layers.

e With the inputs at the bottom and the outputs
at the top, the only permissible connections
are between nodes in consecutive layers and
directed upwards. In consequence, the multi-
layer perceptron is called a feed-forward net-
work.

Weights are specified for all connections. Biases
and activation functions are proposed for each of the
hidden and output nodes. The outputs need not be
binary.

Suppose the output v;, from the kth of the M hid-
den units in Figure 8 is given by

(6) Ur =gk(¢k(x9 Vk))a k= 1’ o aMa

and that the single output y is
) y =f(¢v,w)).
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y

output unit

FiG. 8. A single-output 2-layer perceptron.

Then the expression of y as a function of x is a com-

plicated nonlinear regression function with, as pa-

rameters, the M + 1 sets of weights vy, ..., vy, w.
Various special cases exist.

Example 4.1. Suppose f(¢(v,w)) = vT1+w, and,
for each &,
vp = Yp(xT1p).
Then

. M
y=wo+) "),
k=1

defining a class of additive/linear models equivalent
to projection pursuit models (Friedman and Stuet-
zle, 1981).

Example 4.2. Generalized additive models (Hastie
and Tibshirani, 1990). Suppose M =p,vq;, = 0 and
Ui = 63 (the Kronecker 6), and-f is as in Exam-
ple 4.1. Then

p
y=wo+ Y ),
k=1

defining a generalized additive model.

Example 4.3. Here f(¢(v,w)) = wo+Xpvwp and,

for each &,

v = 8T v + von).

Thus

M p
(8) y=wo+ Z WrE <Zx,~u,~k + Vok) .

k=1 i=1

The case where g is a sigmoidal nonlinearity corre-
sponds to the model discussed by Barron (1991) and
used by Nychka et al. (1992).

Example 4.4. Radial basis function approach
(Broomhead and Lowe, 1988; Moody and Darken,
1989). Here

M
y=wo+ Y wpr P(lx — crll/7),
k=1

where ¢ is called a radial basis function, the {c;}
are points in R? and 7 is a scale parameter. The

" function ¢(-) corresponds to a spherically symmet-

ric function such as the p-variate Gaussian density.
This method has clear similarities with kernel-type
nonparametric methods (Lowe, 1991) and fixed-knot
spline regression. Variations based on regular-
ization are discussed in Poggio and Girosi (1990),
Girosi and Poggio (1990) and Poggio (1990). A simi-
lar network based on wavelets is discussed by Zhang
and Benveniste (1992).

4.2.2 Training

We define the prediction error criterion

N
E=EW)=)_ AG",y (W),

r=1
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where W denotes all the weights, A is a measure of
disparity and y™(W) is the prediction for 2, com-
puted as a function of W and x. For the perceptron
defined by (6) and (7), for instance,

¥y = yOW, {u}) |
= f(¢[{gk(’ll1k(x(r).l/k)), k = ]-s e 7M}a lU])

If y is a vector of continuous-valued components, it
is common to use the Euclidean norm

) Az,y) = ||z —ylI3

and weights W that minimize E(W) are least-
squares estimates. If y is an m-dimensional set of
probabilities and z is an indicator vector, as in clas-
sification problems, a natural alternative to (9) is

m
(10) Alz,y) = — szlogyj.
j=1

This is equivalent to KL(z,y) = X;2;log(z;/y)),
the Kullback-Leibler directed divergence (or cross-
entropy) between z and y. Both (9) and (10) have
been used to assess the performance of discrimi-
nant rules, (9) giving the so-called Brier score and
(10) the logarithmic score; see Titterington et al.
(1981). They are also equivalent to log-likelihood
functions, (9) corresponding to standard Gaussian
assumptions and (10) to quantal response models.

In practice, numerical methods are required to
minimize E(W), and techniques such as conjugate
gradients, quasi-Newton algorithms, simulated an-
nealing and genetic algorithms have been imple-
mented. These methods are often much faster than
the so-called method of error backpropagation (also
called the generalized delta rule; Bryson and Ho,
1969; Werbos, 1974; Parker, 1985). Its creation was
a major element in the explosive reemergence of in-
terest in multilayer perceptrons in the mid-1980’s
(Rumelhart, Hinton and Williams, 1986a, b; Rumel-
hart, McClelland and the PDP_ Research Group,
1986).

As with the delta rule of section 4.1.2, the gen-
eralized delta rule is a gradient-descent algorithm.
The algorithm uses the chain rule for differentia-
tion and requires differentiable activation functions.
The sigmoidal nonlinearity clearly satisfies this re-
quirement but the hard-limiter does not. Hinton
(1992) presents a lucid sketch of the method, of
which a compelling feature was the fact that the
calculations in the iterative step can be laid out on
a network with the same architecture as the original
perceptron but with the directions reversed (hence
“backpropagation of errors”). Thus, in this sense,

the ANN can do its own learning, which is an es-
sential feature if the total procedure is to be plausi-
ble as a valid manifestation of artificial intelligence.
However, convergence is so slow, even with modifi-
cations designed to speed it up, that it is clear that
the brain does not learn by the generalized delta
rule. In spite of this, the rule remains popular in
the neural-network literature; the iterative steps
involve the aggregation of simple calculations, lo-
calized within the network, no matter how massive
the network might be. Whatever numerical method
is used, the E(W)-surfaces are typically complicated
with many local minima.

4.3 Statistical Commentary
4.3.1 Classification and discrimination

As mentioned in Section 2.2, the statistical litera-
ture contains various discriminant rules to compete
with the single-unit perceptron, including Fisher’s
LDF (Fisher, 1936) and linear logistic regression
for quantal response. See, for instance, Duda and
Hart (1973), McLachlan (1992), Hand (1981), and
Cox and Snell (1989). The LDF is a likelihood ra-
tio or Bayes rule when the training sets are random
samples from two equiv-covariant p-variate Gaus-
sian distributions, and, if the covariance matrices
are unequal, there are corresponding quadratic dis-
criminant functions. All these recipes can be de-
picted as networks if we include input nodes corre-
sponding to squares and products of the components
of x. In general, such networks are called higher or-
der. The neural-network literature includes its own
approach to the creation of quadratic discriminant
rules (Lim, Alder and Hadingham, 1992; Kressel,
1991). It would be of interest to compare all the
rules in terms of criteria such as error rates, well
researched for Fisher’s LDF, and robustness to as-
sumptions under which the model-based (statistical)
rules are “optimal.”

The use of hidden layers provides flexibility in
the type of discriminant rule, but the nonneural-
network approaches also have more sophisticated
versions that are motivated by relaxing the assump-
tions about the underlying probability model p(z, x).
Since p(z,x) = p(zlx)p(x) = p(x|z)p(z), the impor-
tant modeling tasks involve p(z|x) itself (on which
logistic regression is based) or p(x|z), the class-
conditional densities of x. At the nonparametric
extreme, kernel-based density estimates might be
used for p(x|2); see, for instance, Silverman (1986).
One advantage of model-based methods is that, pro-
vided the model is valid, the estimated values of
{p(z|x)} indicate the relative plausibilities of the var-
ious possible classes for an item giving data x.

Other types of classifier include classification
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trees (Breiman et al., 1984; Quinlan, 1983), gener-
alized additive models for quantal response (Hastie
and Tibshirani, 1990) and regression by alternating
conditional expectation (ACE) (Breiman and Thaka,
1984). In addition, nonparametric rules include k-
nearest neighbour (2-NN) procedures which assign
an item to the majority class among the % training
cases that are closest, in a prescribed sense, to the
unclassified item.

Ripley (1993a) describes these approaches in more
detail and compares some of them, empirically,
with neural-network approaches, such as multilayer
perceptrons, with various architectures and using
various numerical procedures for training (back-
propagation, quickprop and conjugate gradients),
and linear vector quantization (LVQ; see Sections
6.1 and 6.2). He found that the nearest neighbor
and LVQ methods worked well but, being “nonpara-
metric”, offered little in the way of explanation of
the structure. Projection-pursuit regression filled
that gap without excessive computing time, and the
tree-based methods were fast and gave clear inter-
pretation. On the other hand, the multilayer per-
ceptrons took a long time to train and, in terms of
results, had little to offer over simple methods such
. as nearest-neighbor methods. In a further empir-
ical study, Ripley (1994a) compared Fisher’s LDF,
logistic regression, nearest-neighbor methods, mul-
tilayer perceptrons, trees, projection pursuit regres-
sion and Friedman’s (1991) multivariate adaptive
regression splines (MARS). Also see Section 4.3.2.

Fisher’s LDF is still motivating new and poten-
tially powerful classification tools for very high di-
mensional problems. Hastie, Buja and Tibshirani
(1992) point out that LDF’s overfit if the components
of x are multitudinous (p very large) and highly
correlated (because they are very highly parame-
terized), and they underfit, obviously, if the class
boundaries are nonlinear. A natural approach to
the first difficulty is to regularize as in ridge regres-
sion and smoothing-spline regression; see Tittering-
ton (1985), for instance. This is taken a stage fur-
ther by Hastie, Buja and Tibshirani (1992) in their
penalized discriminant analysis (PDA). They choose
w to minimize

N
(11) 3 {0") - xTw)? + A ow,

r=1

where {0(z)} are a set of m optimal scores, one for
each of the m classes, Q is a nonnegative definite
smoothing matrix and A(> 0) is a smoothing param-
eter. They applied the method to the Zip-code data
of Example 3.2; recall that Le Cun et al. (1989)
achieved 5% error rate on the test data. Hastie,
Buja and Tibshirani (1992) achieved an error rate

of 8.2% compared to the 11% incurred by standard
linear discriminant analysis (LDA), and their ap-
proach involves 256 parameters compared with over
2000 in LDA. They also show that the PDA coeffi-
cients can provide helpful interpretation. Although
the error rates are not as low as those of Le Cun
et al. (1989), PDA is reasonably successful and con-
stitutes a general approach in contrast to the intri-
cate custom-built network of Le Cun et al. (1989).
Other penalized varieties of LDA exist; see Fried-
man (1989), for example.

Key factors underlying PDA are the well-known
relationships between LDA and both multiple linear
regression and canonical correlation analysis (Mar-
dia, Kent and Bibby, 1979). In their development
of flexible discriminant analysis (FDA), Hastie, Tib-
shirani and Buja (1992) adopt the regression inter-
pretation but generalize the form of the regression
function. They adopt the additive model form (Ex-
ample 4.2) and use a least-squares estimation crite-
rion that is penalized by curvature penalties simi-
lar to those used in the definition of cubic splines
(Silverman, 1985). Expression of the fitted func-
tions in terms of spline basis functions leads to
a quadratic optimization criterion similar to (11).
Among several examples, they apply FDA and a va-
riety of other methods, including multilayer percep-
trons, to a set of vowel-recognition data; FDA per-
forms encouragingly well. More systematic compar-
isons would be informative.

4.3.2 Regression

The most obvious statistical interpretation of mul-
tilayer perceptrons (MLP) is that they provide non-
linear regression functions that are estimated by op-
timizing some measure of fit to the training data. If
the latter are noise-free, then the exercise is one
of function approximation. There are many recent
systematic developments in regression, and at least
three important questions must be faced:

o How do the neural-network and statistical pre-
scriptions compare in terms of “performance™?

e How good are various architectures at approxi-
mating members of particular classes of regres-
sion functions?

e What are the most reliable and practicable nu-
merical methods for parameter estimation?

Examples 4.1 and 4.2 define two of the recent
statistical developments: projection-pursuit regres-
sion and generalized additive models. Other in-
novations include Friedman’s (1991) MARS (multi-
variate adaptive regression splines) and Tibshirani’s
(1992) modification of projection pursuit regression
based on so-called slide functions.
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In MARS, the model is

M ks
y=wo+ Y wy [ [ Ao ),

k=1 8=1

where v(s, k) is the index of the predictor used in the
sth factor of the kth product. For k odd,

hgp(x) =[x — tsk]+;hs,k+1(x) = [ta — xl4,

where the knot £, is one of the unique values of
Xys,k)- Terms in the model are added and pruned
to achieve a good fit to the training data and to
ordinary stepwise regression. Barron and Xiao
(1991) suggest a version of MARS (polynomial-based
MAPS) that incorporates a roughness penalty in
(11). Expressions like (11) also underlie standard
smoothing splines (Silverman, 1985; Wahba, 1990),
but high-dimensional versions of these are not prac-
ticable.

Tibshirani’s (1992) variation of projection-pursuit
regression is related to both (7) and (8). He suggests
the model

M
(12) y=wo+ z wr(Tvy — up)y,
k=1

where x is p-dimensional, and he calls (-), the slide
function. He exploits the result of Friedman and
Silverman (1989) that there is an O(N) algorithm
for finding the knots, {u;}. His algorithm also
uses Breiman’s (1993) so-called hinge-function fit-
ting. On albeit small-scale examples, the method
compared favourably with MARS and multilayer
perceptron fitting.

We now consider the question of how well these
models approximate arbitrary underlying regres-
sion functions. As a rule, the more hidden layers
there are and/or the more nodes there are within
each layer, the more flexible are the resulting fitted
functions. To obtain concrete results, we have to im-
pose smoothness constraints on the target function,
but results are available that, taken at face value,
seem impressive. For instance (Lorentz, 1966), ev-
ery continuous function on [0, 1} can be exactly rep-
resented by a function of the form

2p+1 p
y®) =Y f; (Z ¢,~k(x,,)) .

j=1 k=1

However, although the 1, are independent of the

true function, the f; are not; see also Barron and
Barron (1988). As a further example, Cybenko
(1989), White (1990) and Hornik, Stinchcombe and
White (1989) showed that continuous functions on
compact subsets of R can be uniformly approx-
imated by 2-layer perceptrons with sigmoidal ac-
tivation functions, as defined in Example 4.3, a
model involving m(p + 2) + 1 parameters. White
(1989) establishes some statistical theory. Barron
(1993) shows that, for true functions which satisfy
a smoothness constraint given by a bound on the
first moment of the magnitude distribution of the
Fourier transform, this same network achieves in-
tegrated squared error O(1/M) in contrast to the
O((1/M)?/P) suffered by ordinary series expansions.
Thus, the perceptron of Example 4.3 offers superior
parsimony of parametrization; see Barron (1989,
1992, 1994). Similar results are available in the con-
text of sinusoidal activation functions (Jones, 1992),
slide functions (Tibshirani, 1992) and wavelet net-
works (Zhang and Benveniste, 1992).

It is important to be aware of such practical lim-
itations. In some situations in which it appears
that a multilayer perceptron with one hidden layer
is adequate, the number of nodes required can be
prohibitive. In addition, results involving smooth-
ness constraints on the underlying fitted surface
may rule out functions of genuine practical inter-
est. In general, the practical implications of these
results require careful appraisal and there is a need
for more constructive results; see related remarks in
Section 4.3.3. As Geman, Bienenstock and Doursat
(1992) point out, although the models are nominally
parametric, the flexibility required of the models im-
plies that we are effectively in a nonparametric re-
gression context.

If we turn now to the question of numerical al-
gorithms, it seems that for moderately sized prob-
lems methods such as conjugate gradients are much
faster than the generalized delta rule. In very large

" problems, the network structure underlying the lat-

ter and its capacity for massively parallel process-
ing may revive its attraction. In the Zip-code ex-
ample, Le Cun et al. (1989) used a modified New-
ton algorithm in which a diagonal approximation
to the Hessian matrix eliminates the most time-
consuming component of the algorithm. The Gauss-
Newton algorithm, ubiquitously popular in nonlin-
ear least-squares (Seber and Wild, 1989), is also a
candidate as in Tibshirani’s (1992) interpretation of
Breiman’s (1993) method for fitting hinge functions.
Gawthrop and Sbarbaro (1990) use a recursive
Gauss-Newton algorithm. The simplifying feature
of Gauss-Newton is its avoidance of second deriva-
tives of the function being optimized. Webb, Lowe
and Bedworth (1988) compare various methods.
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4.3.3 Time series analysis

A central problem of nonlinear time series anal-
ysis is to construct a function, F : R* — R, in a
dynamical system with the form

Zt = F(Zt—-l’ v aZt—d)’

or possibly involving a mixture of chaos and ran-
domness,

Zi=F(Z;_y,...,Z;_q)+¢,

in which F is a chaotic map and {¢;} denotes noise.
Various types of ANN have been used to approxi-
mate the unknown F. Casdagli (1989) and Moody
and Darken (1989) used a radial basis functions
(RBF) network, while Sanger (1989) and Nychka et
al. (1992) used multilayer perceptrons to duplicate
results of Farmer and Sidorowich (1989) and La-
pedes and Farber (1987). Nychka et al. (1992) il-
lustrated the technique on the chaotic Mackey-Glass
differential delay equation. Stokbro, Umberger and
Hertz (1990) generalized the normalized RBF net-
work

M
F) =) FyPy),
k=1

where F}, are scalar parameters, and {P(.)} are nor-
malized versions of RBF to a neural network whose
hidden units have localized receptive fields. Thus,

M
F@) = (a + b — xp)0;, HPy(x),
k=1

where the x;, are pre-specified p-dimensional vec-
tor parameters, and the o, are scalar parameters.
Given o}, the coefficients a; and by are estimated
by minimizing

N
E=) Z-FZir,..., 2P

t=1

St(;ckbro, Umberger and Hertz (1990) report simu-
lations of the reconstruction of the one-dimensional
logistic map,

Zt = F(Zt) = /\Zt(l —Zt),

and of the Mackey-Glass equation.

It has been found that the dynamical features of
the input signal affect the response of an ANN. For
example, Mpitsos and Burton (1992) use error back-
propagation to train a two-layer network using in-
puts from three sources: (i) chaotic data from the

logistic map with A = 3.95; (ii) white noise; and (iii)
sinusoidal data. They find that learning is more
effective when given chaotic inputs than in the ran-
dom case. In general it is still not clear how an
ANN responds to “irregular” input signals and this
is clearly an interesting problem.

4.3.4 Architecture design and generalization
ability

Section 4.3.2 revealed how some MLPs act as uni-
versal approximators, but care has to be taken not
to fit overly intricate models. Overfitting the model
fits part of the noise in the training set in addition
to the underlying structure leading to a substantial
difference between the abilities of the fitted model
to back-predict the training data and predict future
responses. The ability to perform well for items not
in the training data is known as the generalization
ability. It is important to find a suitable compromise
between overfitting and underfitting: the latter re-
sults in a biased model.

It is familiar in discriminant analysis that naive
error rates based on the training set over-estimate
the true generalizability. Test sets provide an em-
pirical estimate of the true error rate (Hand, 1981;
Titterington et al., 1981); in the absence of a test-
set, devices such as leave-one-out cross-validation
can be applied (Lachenbruch and Mickey, 1968;
Stone, 1974). This notion is also useful in more
general regression contexts. Suppose ¥, = ¥,.(x, w™)
represents a fitted model based on all training
data apart from (z”,x"). Then the simple cross-
validation average prediction loss is

N
CV(®) = N1 Z A(z(r)’};\r(x(r), w(r))),

r=1

where § denotes the underlying fitted model and
A(.,.) is some measure of loss, such as squared Eu-
clidean distance. It is natural to choose a net-
work to minimize CV()) or some similar quantity,
such as the generalized cross-validation (GCV) cri-
terion introduced by Craven and Wahba (1979) and
used with MARS by Friedman (1991). As Barron
and Xiao (1991) remark, these criteria are closely
related to model-choice procedures such as Mal-
lows’ C, (Mallows, 1973), Akaike’s AIC (Akaike,
1974), Schwartz’s (1978) Bayesian BIC method and
the minimum description length (MDL) of Rissa-
nen (1987), which is asymptotically equivalent to
BIC. BIC typically chooses more parsimonious mod-
els than does AIC; see Barron (1991), Barron and
Xiao (1991), Shibata (1981) and Li (1987) for further
discussion. These criteria are now being used in the
neural-networks literature; see for instance Levin,
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Tishby and Solla (1990), who follow the Bayesian
path to the MDL criterion, and Wolpert (1992).

A further modification that combats overfitting
in a Bayesian-like way is the weight-decay method
(Hinton, 1986, 1989; Hertz, Krogh and Palmer,
1991, Section 6.6). The method involves adding a
penalty term to the residual sum of squares that
is proportional to the sum of the squares of all the
weights.

Generalization ability measures performance av-
eraged over the complete ensemble of possible cases.
In practice, often empirical measures are only avail-
able based on a test set or cross-validated training
set, but some theoretical results exist. For certain
cases, Baum and Hausler (1989) bound the probabil-
ity of a prescribed disparity between the empirical
training-set error-rate and the ensemble error-rate.
The bound is a function of the Vapnik-Chervonenkis
dimension, VCdim, (Vapnik, 1982) of the space of
functions representable by the network; it is an in-
dex of the capacity of the network. As Ripley (1994a)
remarks, their bound implies that a two-layer net-
work with M hidden nodes requires a training set of
size N equal to about #(W)/e to guarantee a success
rate of at most ¢ worse than that for the training set,
where #(W) denotes the number of weights. It would
be of interest to know how this result is affected if
cross-validatory error rates are used for the training
set. For results on average-case rather than worst-
case generalization abilities, see Levin, Tishby and
Solla (1990). Moody(1992) also contains interesting
developments.

As Example 3.2 illustrates, some networks in-
volve huge numbers of parameters even after con-
siderable simplification of the parameterization.
Parsimony can be also be achieved if it is appro-
priate to impose invariance requirements; see Bi-
enenstock and Von der Malsburg (1987), Perantonis
and Lisboa (1992) and Fukumi et al. (1992).

In Geman, Bienenstock and Doursat’s (1992) lu-
cid account of nonparametric regression in neural-
network contexts, they exploit thé above role for
the VCdim in sketching the asymptotic theory of
mean-squared error estimation of regression func-
tions. They make the crucial remark that reassur-
ing asymptotic results are likely to be rendered ir-
relevant in practice by the “curse of dimensionality”.
Typical training sets are almost inevitably too small
by orders of magnitude for the asymptotic theory to
be a reliable guide.

The study of generalization ability and the de-
velopment of methodology for network design are
among the most important current areas of re-
search.

4.3.5 Bayesian modeling of multilayer
perceptrons

As indicated in Section 4.2.2, the “traditional” ap-
proaches to weight selection are closely related to
maximum likelihood estimation under certain as-
sumptions about noise processes assumed for the
data. It is also natural to explore the Bayesian ap-
proach. Recall that D denotes the training data, let
A denote the network architecture, including the ac-
tivation functions, and let  denote all parameters
within the model. Usually, § = (W, 3) where 3 de-
notes parameters associated with the noise model
for D; W is usually associated with the means.
Then, if P generically denotes probability density
function,

13)  P(D,6,A) = P(D|9, AP(GIAPA).

If the architecture (i.e., the model) is prescribed,
then we can start from

(14) P(D,0) = P(D|0)P(9).

The first factors on the right-hand sides of (13) and
(14) are the likelihood terms. If, for instance, the
expectation of 2, given x, is f(x, W) and if there is
independent additive Gaussian noise with variance
B~1, the likelihood term is proportional to

1 X
BN/ 2exp {—-2-ﬂ Z 27 — &, W)II%} .

r=1

Particular questions of interest concern (i) inference
about the parameters, W, in particular, given A; (ii)
about the relative plausibilities of different archi-
tectures; and (iii) about the predictive distribution
of an unknown 2, given its x. In theory, these are
all standard Bayesian computations. For (i), we re-
quire the posterior

(15) P(6|D) = P(D|9)P(8)/P(D),
where
(16) P(D) = / P(D|6)P(6)db.

For (ii), we need ratios like

P(A2|D) P(D|A;) P(Ay)

an P@, D) = PD|Ay) Py’

where A; and Ay are two possible architectures and

P(DIA) = / P(D|9;, ADP(6;|A)d6;,
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i = 1,2. For (iii), we need
(18) Plzlx,T) = {P(D)} ! / Plzlx, O)P(D|6)P(6)d.

In (17), the ratio {P(D|A,)/P(D|Aj)} is called a Bayes
factor; see Smith and Spiegelhalter (1980) and Kass
and Raftery (1993). Even computation of relative
values of densities from (15) and (18) is generally
not trivial, especially as the prior density, e.g., P(6),
usually includes hyperparameters requiring a fur-
ther Bayesian stage. Computation of P(D) and the
Bayes factor is daunting. If the likelihood were
Gaussian, f(x,w) were linear in w and conjugate
priors chosen, explicit results are available, in the-
ory. Such approximations were adopted by MacKay
(1992a, b). Neal (1992a, 1993) uses variants of
the Markov-chain Monte Carlo approach (Besag and
Green, 1993; Smith and Roberts, 1993). In partic-
ular he finds that basic Gibbs sampling is not ade-
quate and relies on the hybrid Monte Carlo method
of Duane et al. (1987). Buntine and Weigend (1991)
provide a nice general account of the Bayesian ap-
proach, also mentioning Gaussian approximations.
They point out the familiar equivalence of some
Bayesian maximum a posterior (MAP) prescriptions
to smoothing techniques of the regularization type
and comment on the link, alluded to in Section 4.3.4
above, with Rissanen’s MDL approach.

There is much to do in this area, both in terms of
computational developments in dealing effectively
with hyperparameters and in exploiting the in-
terpretation of Bayesian procedures as smoothing
mechanisms. As Geman, Bienenstock and Doursat
(1992) emphasize, unless regularization is imposed
by smoothing in some appropriate way, there is lit-
tle hope of realistic networks being trainable using
practical training sets.

5. ASSOCIATIVE MEMORIES OF THE
HOPFIELD TYPE

" 5.1 Architectures and Training

In the basic Hopfield network (Hopfield, 1982),
each feature vector, x, is a multivariate binary (+1)
vector. The objective is to associate with x one of
a set of m exemplars that have been stored in the
memory. One can think of the stored exemplars as
a training set consisting of one representative for
each of the class-types (Example 3.4).

In contrast to multilayer perceptrons, the outputs
of this network are not explicit functions of the in-
puts. Instead, they are stable states of an iterative
procedure, albeit one that terminates in finite time.

The Hopfield network processes an input pattern,

x, as follows. Set y©@ = x and compute

p
¥ = fy (Z wijy}")) ;
1

19
(19) i=1,...,p;

n=0,1,...

where the weight matrix W = {w;;} is defined in
terms of the exemplars {zV,...,2™} by

m
W=p! Zz(i)(zU))T,
=1

but with w; = 0, for all i. The way in which W is
constructed is called Hebbian learning (Hebb, 1949).
In (19), all components of yg") are updated syn-
chronously (Little, 1974). In the true Hopfield mod-
els, the components are updated asynchronously,
that is, one at a time according to some determinis-
tic or random schedule. The network is depicted in
Figure 9 and shows the intra-layer looping typical
of so-called recurrent networks.

A vital step in investigating convergence of the al-
gorithm (in terms of y™ reaching a limit as n — oo,
given x) is the identification of an “energy surface”,

(20) L(y) = —%yTWy.

Since y? = 1, for all i, the diagonal elements of W are
arbitrary as far as optimizing over y is concerned.

If W is symmetric, as in Hebbian learning, asyn-
chronous updating leads to a decrease in energy pro-
vided that yﬁ"*l’ # yg"’ . Iterative asynchronous up-
dating, therefore, leads us to a local minimum of
L(y). All local minima are stable states of the up-
dating rule. As Example 3.4 confirms, not all ex-
emplars may be stable states, and convergence may
occur to a stable state that is not an exemplar.

In general, the introduction by Hopfield (1982)
of the energy function (20) has revealed links with
statistical physics (Amit, Gutfreund and Sompolin-
sky, 1985a), general optimization theory and dy-
namical systems: for “energy function” read “Hamil-
tonian function,” “objective function” or “Lyapunov
function” and for “stable states” read “attractors.”
These analogies have led to calculations concern-
ing storage capacity of such networks, although to
make progress, we have to make certain assump-
tions about the structure of the m p-variate exem-
plars.

For instance, suppose all components of all exem-
plars are independently and randomly chosen +1.
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p units

p inputs

F1G. 9. Architecture of Hopfield net.

Then Amit, Gutfreund and Sompolinsky (1985b)
showed that in the limit as m, p — oo such that
m = ap, the efficient retrieval of memory requires
that a < 0.14. McEliece et al. (1987) showed that,
if m < p/(4logp), then with probability one all m
exemplars are stable states and, if p/(4logp) < m <
p/(2logp), then most exemplars are likely to be sta-
ble.

In Example 3.4, note that, with m = 10 and p = 63,
m(logp)/p ~ 2/3; it is not surprising that only a few
of the exemplars are stable states. If, however, we
store only the exemplars {1,2, 3,4}, they are all sta-
ble states. For more insight into the issue of mem-
ory capacity, see Newman (1988), Komlos and Pa-
turi (1988) and Whittle (1991).

The basic Hopfield network was an important
milestone in ANN research as an associative mem-
ory that implemented Hebb’s ideas about learn-
ing and as a springboard for many future devel-
opments. For instance, Hopfield (1984), and Hop-
field and Tank (1985) adapted the deterministic ver-
sion to cater to continuous-valued variables and
continuous-time updating. Bornholdt and Graudenz
(1992) trained Hopfield-like networks using genetic
algorithms (Goldberg, 1989).

5.2 Statistical Commentary

Of particular interest to applied probabilists, sta-
tistical physicists and statisticians is a further mod-
ification of the Hopfield network in which the hard-
limiter activation function is replaced by a proba-
bilistic rule based on a sigmoid nonlinearity; see
Section 3.2. Thus, if y; is to be updated, it becomes
yi, where :

[1+exp{— Y wyy;}17! = fiw]y)

+1, with probability
mn%={
—1, with probability 1 — f,(wy).

An asynchronous updating rule like (19) but based
on (21) is equivalent to the Markov chain Monte
Carlo technique known as Gibbs sampling or
Glauber dynamics (Amit, 1989), and it leads to a
formal link between the spin-glass models of statis-
tical physics (Hertz, Krogh and Palmer, 1991), mod-
ern statistical image analysis (Geman and Geman,
1984) and the study of Boltzmann/Gibbs distribu-
tions in general.
Consider the Gibbs distribution defined by

p(y) = {C(W)} lexp {+ > Winyj}
(22) ~

= {COW)} Texp{-L(y)},

where L(y) is given by (20). Suppose that the
internodal links are such that the Markov chain
defined by an updating rule based on (21) is irre-
ducible and ergodic. Then, in the limit, a random
realization from (22) is generated and the stationary
(Boltzmann/Gibbs) distribution (22) can be iden-
tified with the network. Such networks are
called Boltzmann machines (Ackley, Hinton and

Sejnowski, 1985; Hinton and Sejnowski, 1986) par-

ticularly versions that include hidden units in order
to create added flexibility. There are several aspects
of statistical interest.

¢ Explicit inclusion of a scale parameter in the
definition of L(y) that is interpretable as a sta-
tistical physics “temperature” leads to simu-
lated annealing algorithms for finding minimiz-
ers of L(y) (temperature | 0) or simulated real-
izations from (22) itself (temperature | 1). The
resulting minimization algorithms have been
used to attack combinatorial optimization prob-
lems such as the travelling salesman problem
with mixed success (Aarts and Korst, 1989).

e General information-geometric results about
exponential-family distributions relate the
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structure of algorithms used for training
Boltzmann machines to fit a training set or
to approximate desired stationary distributions
to maximum-likelihood methodology (Amari,
1990; Amari, Kurato and Nagaoka, 1992;
Byrne, 1992).

e For networks with hidden units, one can de-
rive training algorithms that are versions of
the EM algorithm (Dempster, Laird and Rubin,
1977), and the corresponding M-step is a ver-
sion of the iterative proportional fitting proce-
dure used in analyzing multiway contingency
tables and elsewhere (Bishop, Fienberg and
Holland, 1975; Csiszar and Tusnady, 1984;
Byrne, 1992). The case of polytomous, rather
than binary, units is worked out in Anderson
and Titterington (1993).

There are many interesting variations on these
probabilistic networks; see Smolensky (1986);
Campbell, Sherrington and Wong (1989); Hertz,
Krogh and Palmer (1991); Amit (1989), for exam-
ples. Whittle’s (1991) antiphon inserts randomness
differently into the network at the input stage to a
unit rather than the output. He assesses the ca-
pacity of his networks using information-theoretic
criteria. The capacity of stochastic Hopfield-type
networks is discussed in Hertz, Krogh and Palmer
(1991), Amit (1989) and Amit, Gutfreund and Som-
polinsky (1985b). Neal (1992b) develops Boltzmann-
like machines based on belief networks (Pearl, 1988;
Spiegelhalter and Lauritzen, 1990) and uses a Gibbs
sampler to train the network on the basis of training
data. He points out its superior learning speed over
that of Boltzmann machines and indicates possi-
ble application to medical diagnosis problems. This
is an area of interest to statisticians, because it
is closely related to probabilistic expert systems
(Lauritzen and Spiegelhalter, 1988) and graphical
models (Whittaker, 1990). Somewhat different prob-
abilistic networks are described by Gelenbe (1991a)
and Bresshoff and Taylor (1990).

6. ASSOCIATIVE NETWORKS WITH
UNSUPERVIZED LEARNING

6.1 Architecture and Training

The simplest associative networks are single-
layer networks with m output units, all fully con-
nected to the p inputs. In this context, the p-vector
w; denotes the connection weights between the in-
puts and the ith output unit and can be interpreted
as the exemplar for that unit. In MAXNET (Lipp-
mann, 1987), the output unit that fires is such that

(25) i* = argmin ||x’
. il

A(w;, x) is smallest, where A is a measure of dispar-
ity and x is the input pattern. In the supervized
case, with A(w;,x) = ||w; — x||2, a gradient-descent
learning rule for the {w;} can be derived as follows.

Recall from Section 4.1.1 that the training set is
denoted by D = {(2,x"),r = 1,...,N}, where zgf) =
1if x™ comes from cluster i* and z{” = 0 for all other
i € {1,...,m}. Define the objective function

1 m N
@3)  EW)=53 3 2l —wil.

i=1 r=1

Then a gradient-descent rule that modifies the set
W of all weight vectors on the basis of incorporating
the rth training case is given by the delta rule

(24) Aw; = ™ — wi)zﬁ.' )
i=1,...,m. Of course, (23) can be minimized di-
rectly by

w; = Zzgf’x‘”/Zzﬁ’),
r r

the sample mean of patterns for which zﬁ.’) =1.1In
the unsupervized case, but still assuming that there
are to be m clusters, (23) should be minimized with
respect to the (missing) {zg’)} as well as the {w;}.
This leads to the m-means (usually described as
“k-means”) clustering algorithm. Rule (24) still ob-
tains, provided we define

2" =ZPD(W) = 6,

where

(r) _ wi"%,

and & denotes the Kronecker delta. The scheme
represented by (24) and (25) is a simple example
of competitive learning. The supervized version un-
derlies Kohonen’s (1989) learning vector quantiza-
tion (LVQ) scheme for partitioning the input pattern
space, and more general architectures are developed
by Rumelhart and Zipser (1985). The same updat-
ing scheme is used within the adaptive resonance
theory (ART) of Carpenter and Grossberg (1988), de-
scribed in Example 3.5.

Extra features in Kohonen’s (1989) self-organizing
feature maps (Example 3.6) are the lateral connec-
tions between pairs of output nodes (also see Will-
shaw and Von der Malsburg, 1976), and the fact that
weights associated with output nodes close to that
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which fires (through (25) also change. The delta rule
is modified to become

Aw; = nK(, M) — w;),

for all i, where K(i,i*) is a kernel-type function,
monotonic decreasing in the distance between nodes
i and i* and zero outside a neighborhood of i*. As the
size of the training set increases, the neighborhood
size is decreased as, usually, is 7; see Kohonen et
al. (1991) for applications and developments of this
approach. In view of the learning rule, it turns out
that the distribution of the m weight vectors should
reflect the underlying probability density function of
the input vectors. For details, see Ritter and Schul-
ten (1986).

6.2 Statistical Commentary

Section 6.1 described only elementary versions
of a large range of self-organizing neural networks
trained by competitive learning algorithms based on
(24) and (25). The essential points to note are the
common learning rules and the relationship with
statistical comparators from the literature on clus-
ter analysis. See Hartigan (1975), Hand (1981),
Gordon (1981), Van Ryzin (1977) and the report of
the Panel on Discriminant Analysis and Clustering
(1989). We commented in Section 6.1 on the link
with the k-means clustering algorithm. Another ap-
proach is to assume that the unsupervized training
data come from a mixture of m component distribu-
tions, that are often taken to be p-variate Gaussian.
Training amounts to a statistical estimation exer-
cise such as maximum likelihood estimation pro-
vided that the number of clusters, m, is specified.
The problem of deciding what m should be from un-
supervized training data is not straightforward, in
spite of recent efforts. For a general background on
mixtures see Titterington, Smith and Makov (1985)
and McLachlan and Basford (1988). The latter dis-
cusses cluster modeling in detail, as does Tittering-
ton (1984), and Sections 4.3.4, 4.4.3 and 5.3 of Tit-
terington, Smith and Makov (1985). The problem of
deciding what m should be is discussed in Section
5.4 of Titterington, Smith and Makov (1985) and in
Titterington (1990). An interesting recent approach
is discussed by Lindsay and Roeder (1992).

The important interface question here is to what
extent the statistical approaches are relevant or
computationally feasible for applications dealt with
within the neural-network literature. One possibly
useful tool is the Gaussian sums idea of Sorenson
and Alspach (1971), in which a probability density
function is estimated by an equally-weighted mix-
ture of m p-variate Gaussian distributions. Pro-

vided m increases appropriately with N, the Gaus-
sian sum provides an arbitrarily close estimate of
the underlying density of the training data which
is assumed to be a random sample. The method
is essentially a radial basis function method, inter-
mediate between a standard Gaussian mixture and
a kernel-based density estimate using a Gaussian
kernel. In practice, all these multivariate methods
are prone to the curse of dimensionality alluded to
in Section 4.3.4.

The delta rules (5) and (24) are reminiscent of re-
cursive methods in statistics. A simple case is recur-
sive updating of a sample mean. If ¥, = n~!X]_;x",
then

(26) AZp = Fpy1 —%n = (n+ 1) 1" —x,),

which is like (24) but with = n(n) = (n + 1)~1.
The recursion (26) is a simple stochastic approxima-
tion (Robbins and Monro, 1951; Fabian, 1968), and
stochastic approximation theory is of value in in-
vestigating delta-type learning rules (White, 1992).
Also of interest is the modification of (24) and (25)
to versions that are not decision-directed. Rule (24)
is decision-directed in that it assigns ¥ in an all-
or-nothing way to one cluster. Alternatively, x"
might be allocated partially, according to a random-
ized rule, to each cluster. This is similar to the pro-
cess known as learning with a probability teacher
and is related to the softmax procedure of Bridle
(1990). For various recursive methods of this type,
see Chapter 6 of Titterington, Smith and Makov
(1985).

The history of identifying data with cluster cen-
ters under the nomenclature of vector quantization
is a long one, and its importance to communication
theory was recognized in the March 1982 Special Is-
sue of the IEEE Transactions on Information The-
ory (Volume 28, pp. 127-202). In that context, the

problem was that of “the mapping of vectors from

an analog information source into a finite (our ital-
ics) collection of words for transmission over a dig-
ital channel....” (Gray, 1982). The justification of
the terminology “vector quantization” is that a data-
vector x is reduced or quantized to the indicator of
the closest cluster center. The essential features
of the k-means algorithm of MacQueen (1967) em-
anated from Lloyd (1957), reprinted in the Special
Issue. Optimal quantization (i.e., optimal choice of
cluster centers) is discussed by Gersho (1982), and
earlier by Linde, Buzo and Gray (1980), in the form
of the eponymous LBG algorithm; also see Luttrell
(1990, 1991, 1992). Asymptotic results for the k-
means method (Hartigan, 1978; Pollard, 1981) are
extended by Pollard (1982a, b), and Kieffer (1982)
investigates the rate of convergence of the empirical
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quantizers. A glance at current literature confirms
quantization remains an important topic in infor-
mation theory. See Gray (1990).

7. THE FUTURE FOR THE INTERFACE BETWEEN
ANN MODELING AND STATISTICAL
METHODOLOGY

Statisticians must continue to undertake critical
comparisons in common areas such as discriminant
analysis (pattern recognition) and cluster analysis
(associative memories). We have shown that some
statistical procedures, including regression, princi-
pal component analysis, density estimation and sta-
tistical image analysis, can be given a neural net-
work expression. In addition, we have shown that
there is scope for general statistical modeling in
neural network contexts, and we have remarked
that familiar criteria for model-choice can be and in-
deed have been applied to neural network models.
Some of this methodology involves modern Monte
Carlo approaches to inference. Applied probabilists
may find of interest the structures of the stochastic
Hopfield networks and associated developments (cf.
Whittle, 1991).

In data analysis, a variety of interesting ques-
tions are suggested. Are neural networks that are
not model-based useful in everyday contexts? If so,
can they cope with complications such as missing
data? Can it be established that a general statis-
tical approach, such as projection pursuit regres-
sion or the flexible discriminant analysis of Hastie,
Buja and Tibshirani (1992), will always be found
that will work at least as well as an idiosyncratic
network designed for a very specific application?
(If not, then why not or when not?) Does the
error-backpropagation learning rule, slow even with
acceleration-motivated modifications, still have a
place? Are systematic procedures for model choice
useful? How best can regularization techniques be

used to avoid overfitting? How far can theoreti-

cal work take us in assessing generalization ability?
- An increasingly common criticism of neural network
methods is that they may provide good predictors
but are difficult to interpret. How important is in-
terpretability in particular applications?

There is an increasing emphasis on probabilistic
and statistical ideas in the current neural-network
literature. Some wheels are being reinvented and
some tools are being reapplied in new areas. It is
important for statisticians to be aware of this whole
field and to be able to contribute in a critical but
not destructive way. They should be prepared to dis-
cover some new ideas and, undoubtedly, new classes
of large-scale challenging problems.

Kanal’s (1993) personal view of the current sta-

tus of pattern recognition contains much food for
thought. He retraces the downs and ups of ANN re-
search, remarking on its successes but noting that
comparatively simple statistical procedures often
perform as well or better. He supports the idea of
hybrid networks to deal with complex problems or
even the fusion of methods from several different
approaches. He alludes to a hybrid network for clas-
sifying radar cross sections that consist of a lower
layer of 17 triples each containing a linear vector
quantizer, a back-propagation network (MLP) and
an ART network. Each triple feeds upwards into
one of 17 further back-propagation networks, the
outputs from which feed into a final MAXNET that
identifies the predicted pattern. It is important to
evaluate when and to what degree such an intricate
network offers superior performance to approaches
from the standard statistical repertoire.
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Comment

S. Amari

First of all, I would like to thank the Editor for
giving me an opportunity to present my personal
view on this interesting paper connecting the inter-
disciplinary field of neural networks and statistics.
I also congratulate the authors for their excellent
job of reviewing this difficult field in a very compact
and comprehensive way.

The brain is an enormously complex system in
which distributed information is processed in par-
allel by mutual dynamical interactions of neurons.
It is still difficult, and challenging, to understand
the mechanisms of the brain. Recently, the impor-
tance and effectiveness of brain-style computation
has been widely recognized by the name of neural
networks. Roughly speaking, there are three dif-
ferent research areas concerning neural networks.
One is the experimental area based on physiology

"and molecular-biology, which is progressing rapidly
and steadily. The second area is engineering appli-
cations of neural networks inspired by the brain-
style computation where information is distributed
as analog pattern signals, parallel computations are
dominant and learning guarantees flexibility and ro-
bustness of computation. This area has opened new
practical methods of pattern recognition, control
systems, time-series analysis, optimization, mem-
ories, etc. The third area is concerned with theoret-
ical (or mathematical) foundations of neurocomput-
ing, which search for the fundamental principles of
parallel distributed information systems with learn-
ing capabilities. From this standpoint, the actual
brain is a biological realization of these principles
through a long history of evolution.

Statistics has a close relation with the second ap-
plications area of neural networks, as the present
authors have so clearly shown (also see Ripley,
1993a). Statistical methodology is indeed a very im-
portant tool for analyzing neural networks. On the
other hand, neural networks provides statistics with
tractable multivariate nonlinear models to be stud-
ied further. It also inspires statistical sciences with
the notions of learning, self-organization, dynam-
ics, field theory, etc. which statistics has so far paid
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little attention to. On the other hand, statistical
sciences provides one of the crucial methods for con-
structing theoretical foundations of neurocomputing
(e.g., Amari, 1990, 1993a). Without these founda-
tions, it is difficult for neural network technology to
take off from the present rather “easy and shallow”
technology to a more fundamental one.

Artificial neural networks research has experi-
enced ups and downs; up in the early sixties where
the perceptron and the adaline were proposed and
again a big up in the middle of the eighties until
now. It is said that the dark period was around
the seventies where little attention had been paid
to ANN and that the Minsky-Papert critique gave
rise to this down. However, I believe this prevailing
story is merely a myth. We can point out the lack of
supporting technology as the background of this fall.
Computer technology had developed greatly through
the sixties and seventies. Researchers on pattern
recognition and artificial intelligence thought that it
was easier and more powerful to use symbol process-
ing in modern computers rather than to use neural
networks technology. This was true, and informa-
tion processing technology including artificial intel-
ligence had been constructed successfully upon mod-
ern computers. However, hardware technology had
further developed in the eighties such that it could
support neural parallel computation. It was not a
dream to construct neurochips or even neurocom-
puters. There are, of course, many other intellectual
reasons to support the resuscitation in the eighties.

In the seventies, most researchers did not think
that engineering applications of neural networks
were realizable. The background technology was
not yet matured at the time. However, it was not
a dark period in theoretical study because many of
the ideas were proposed in the “dark period” that
were rediscovered or developed further to be the fun-
damental methods supporting the neural network
methods today.

For example, the generalized delta rule for a mul-
tilayer perceptron was proposed in 1967 (Amari,
1967) where analog neurons were used and the
stochastic descent algorithm was applied. The idea
was also introduced in a Russian book (Tsypkin,
1973). I believe that there were not a few re-
searchers who knew the idea at that time. It was
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the great achievement of Rumelhart, Hinton and
Williams (1986b) who not only rediscovered the old
idea but have shown its effectiveness in practical
problems.

The idea of associative memory of the Hopfield
type was intensively studied in 1972 by Kohonen
(1972), Nakano (1972) and Anderson (1972). Amari
(1972) studied its dynamical characteristics, includ-
ing both the symmetric connections case where
memorized patterns are fixed points of dynamics
and the asymmetric connections case where se-
quences of patterns are memorized and recalled.
Hopfield introduced the new notion of the “en-
ergy” or Lyapunov function to analyze the asso-
ciative memory model and opened the new ap-
proach of spin-glass analogy to this field. A
lot of fundamental studies appeared by using the
statistical-physical (spin-glass) method, although
the statistical-mechanical theory of neural networks
itself appeared in the seventies (Little, 1974; Amari,
Yoshida and Kanatani, 1977) the latter of which
treated more general non-equilibrium dynamics.

A fundamental idea of self-organizing neural net-
works was proposed by Von der Malsburg (1973).
It was applied to the formation of neural topologi-
cal maps (Willshaw and Von der Malsburg, 1976).
The dynamical instability of such neural field dy-
namics was studied (Takeuchi and Amari, 1979),
which guarantees the formation of patch structure
and columns existing in the brain. Based on these
works, Kohonen (1982) proposed an excellent idea
of learning vector quantization (LVQ) and neural
topological maps which are much more simple and
efficient compared with the previous models. The
possibility of neural principal component analyzer
was also pointed out in the seventies (Amari, 1977).
Grossberg’s adaptive resonance theory (ATR) was
proposed in 1976 (Grossberg, 1976).

The achievements in the seventies should not be
too exaggerated. Not only old ideas were devel-
oped to be applied to practical problems, but a lot
of new ideas emerged in the eighties. I would like
to emphasize that we need much more fundamental
new ideas and mathematical foundations in order
to elucidate principles of neurocomputing. Statisti-
cal and probabilistic methods are very important for
this purpose. The current applications have proved
the usefulness of neurocomputing but are still su-
perficial even though they have provided a strong
impact on various fields of science and technology
with novel nonlinear modeling.

Here, I would like to point out two more in-
teresting topics related to statistics. One is the

learning curve that shows how fast a learning
machine can improve its behavior as the number
of training examples increases. This problem is
closely related to the asymptotic theory of statis-
tical inference, but the behavior of a network is
measured by the generalization error, not by the
squared error of estimated parameters. The es-
timate of the generalization error can be applied
to the model selection problem in which the sta-
tistical methods such as Akaike information crite-
rion (AIC) and minimum description length (MDL)
are useful. There are a number of approaches to
this problem, for example, the computational learn-
ing theory approach (Baum and Hausler, 1989),
statistical-mechanical approach (Levin, Tishby and
Solla, 1990), information-theoretic one and statis-
tical approach (Amari and Murata, 1993; Amari,
1993b). When a network behaves stochastically, the
statistical asymptotic theory can easily be applied to
this problem. However, when the underlying model
is deterministic (or the 0 temperature case in physi-
cists’ terminology), the underlying model becomes
nonregular in the sense that the Fisher information
becomes infinitely large. Therefore, the regular sta-
tistical theory cannot be applied. However, we can
still construct a universal theory (Amari, 1993b).
This is one interesting fact about neural networks.

Another interesting topic concerns the expecta-
tion and maximization (EM) algorithm and infor-
mation geometry. The EM algorithm is the tech-
nique of estimation when only partial data are ob-
served. When a neural network includes hidden
neurons, only input and output signals are observ-
able as learning data and desired signals on the hid-
den neurons should be generated or estimated by
some means. The EM algorithm is used in learning
of hidden units of the Boltzmann machine (Amari,
Kurato and Nagoako, 1992; Byrne, 1992). It is inter-
esting that the procedures of the EM algorithm cor-
respond to the e-geodestic projection and m-geodesic

.projection in the manifold of probability distribu-

tions, in the sense of differential geometry of sta-
tistical inference (Amari, 1985).

Recently, Jordan and Jacobs (1993) proposed a
model called the mixture of expert networks in
which one of the component networks is responsible
for its own specific tasks. This enables parallel and
distributed sharing of tasks. The missing or hidden
data is which task should be processed by which
network. This model is represented by a mixture of
exponential families, and the EM algorithm as well
as information geometry plays an essential role in
such models.
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Comment

Andrew R. Barron

Relationships between topics in statistics and ar-
tificial neural networks are clarified by Cheng and
Titterington. There are fruitful concepts in artificial
neural networks that are worthwhile for the statis-
tical community to absorb. These networks provide
a rich collection of statistical models, some of which
are ripe for both mathematical analysis and prac-
tical applications. Many aspects of artificial neural
networks are in need of further investigation. Here,
I comment on approximation and computation is-
sues and their impact on statistical estimation of
functions.

APPROXIMATION

Attention is focussed on the most commonly stud-
ied feedforward networks (perceptrons) which have
one or two “hidden” layers defined by composition of
units of the form ¢(wx + wy), where ¢ is a hardlim-
iter or sigmoidal activation function and wo, w de-
note the parameters (internal weights) that adjust
the orientation, location and scale of the unit func-
tions (Rosenblatt, 1962; Rumelhart, Hinton and
Williams, 1986a). In the one hidden layer case,
a linear combination of such units is taken with
the internal weights adjusted so that the result
approximates a targef function. These networks
may be regarded as an adjustable basis function ex-
pansion of ridge form similar to projection pursuit
(Friedman and Stuetzle, 1981) and similar to sparse
trigonometric series with adjustable frequency vec-
tors. Linear combination of such adjustable basis
functions can provide an accurate approximation
with far fewer units than by linear combination of
any fixed basis functions for certain classes of tar-
gét functions when the number of input variables
is greater than or equal to three (Barron, 1993). A
consequence is that more accurate statistical func-
tion estimation is possible for such target functions
(Barron, 1994).

These conclusions for one hidden layer networks
are based, in part, on the following result devel-
oped in Jones (1992) and Barron (1993). Suppose
a function f(x) is such that f(x)/V is in the closure
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of the convex hull of the set of units {+¢(wx + wy) :
(wo,w) € R}, where ¢ is bounded by 1 for some
positive number V. The closure is in the Ls(u) norm,
where 4 is any given probability measure u with
bounded support on R?. Then there are M such
units with choices of weights depending on f and
i, such that their linear combination f3(x) (a sin-
gle hidden layer network) achieves approximation
error

I = Furll < \/LH

where the norm is taken in Ls(u). The surpris-
ing aspect is that the approximation rate as a
function of M is independent of the dimension d.
A subclass of functions that satisfy the condition
are those that possess a bound on the first mo-
ment of the Fourier magnitude distribution. (This
class includes all smooth positive definite func-
tions and convex combinations of translates of such
functions.) In contrast, approximation using any
fixed M basis functions cannot achieve approxi-
mation error uniformly better than order 1/M/d
for the same class of functions f, taking u to
be the uniform distribution on a d-cube (Barron,
1993).

It is of interest to characterize what classes of
functions can be more parsimoniously approximated
using two rather than one hidden layer in the net-
work. Some functions such as the indicator of a cube
or a ball are not accurately approximated by the
ridge expansions represented by one-layer networks
without resorting to a number of units exponentially
large in the dimension. In these cases the network
capabilities may be improved by inclusion of a sec-
ond layer of threshold nonlinearities. Units on the
second layer can provide indicators of the level sets
of linear combinations of the first layer units. These
level sets can be arranged to take arbitrary polygon
shapes (Lippman, 1987). The linear combination of
the outputs of the second layer then give piecewise
constant approximations of a rather general form.
One conclusion of the same flavor as above is that if
a function f is such that f(x)/V is in the closure of
the convex hull of the set of signed indicators of K-
sided polygons for some positive V, then there is a
two hidden layer network function fx s (x) with KM
units on the first layer and M units on the second
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layer such that ||f — fxu|| < V/VM. It is not clear
yet how much more general a class of functions this
is than those in the convex hull of signed indica-
tors of half-spaces. Another approach to examining
approximation by two hidden layer networks is in
Cybenko (1988). He shows that by using sigmoidal
activation functions the second layer units can be ar-
ranged to implement localized kernel functions that
are then linearly combined to provide the function
approximation. He shows that the approximation
error tends to zero but does not give a bound on the
rate. It is not clear that localized basis expansions
will be effective in high dimensions. Nevertheless,
two hidden layer networks may provide one way to
combine the positive benefits of global ridge approx-
imations and local kernel approximations.

ESTIMATION

These multiunit perceptrons are nonlinearly pa-
rameterized models incorporated into least squares
regression, classification and likelihood maximiza-
tion. By combining results on network approxima-
tion with analysis of statistical risk, it is possible to
bound the accuracy of neural network estimators in
. certain cases.

Frameworks exist for the analysis of the total
risk of function estimation using neural networks
or other nonlinear models for various choices of
loss function. Analogous to the bias-variance de-
composition of the mean squared error, the prob-
lem decomposes into separate consideration of the
approximation error and the additional error due
to estimation of the function from a finite sample
(see, for instance, Haussler, 1992; Barron, 1991).
With squared error loss, the estimation error can
be bounded by the ratio of the number of parame-
ters to the sample size times a logarithmic factor.
The best rate of convergence for a network estima-
tor occurs when the size of the network (indexed
by the number of parameters) is chosen so that the
estimation error is of the same order as the approxi-
mation error. In particular, the general risk bounds
are applied to the case of one hidden layer networks
in Barron (1994). There conditions are given such
that the risk is bounded by

V2 Md
2
EIf - <0 (37 + 5 ogN),

where M is the number of units, d is the input
dimension, N is the sample size and V is as dis-
cussed above. This risk bound is of the order
V2((d/N)log N)'/2 with M ~ (N/(dlog N))"/2. Thus,
a satisfactorily small statistical risk is possible with-
out requiring an exponentially large sample size.

The estimator 7 that achieves these bounds is as-
sumed to correspond to a global optimum of the em-
pirical squared error loss, among one hidden layer
networks with M units subject to certain constraints
on the parameter values. It can be shown, un-
der similar conditions, that the same risk bounds
hold for any estimator that achieves an empirical
squared error not larger than a prescribed value de-
termined by the bound on the approximation error.

Since, in general, the network approximation er-
ror is not known in practice, data-based model se-
lection criteria are useful to select a size of network
that achieves approximately the best convergence
rate permitted by the class of models. Such risk
bounds are available for networks selected by cer-
tain complexity based criteria (Barron and Cover,
1991; Barron, 1991). It is an open problem whether
risk bounds can be developed for networks selected
by other criteria such as Akaike’s AIC; such bounds
would be analogous to the results available for lin-
ear models by Shibata (1981) and Li (1987).

COMPUTATION

In some cases, optimization of the appropriate ob-
Jjective function is proven to provide accurate esti-
mators in the sense of statistical risk, as discussed
above. However, there is no known algorithm for
network estimation that is proven to produce accu-
rate estimates of functions in a feasible amount of
computation time. At the least, we should avoid
having an average computation time that is expo-
nential in the input dimension d. Ideally, the com-
putation time should be bounded by small degree
polynomial in N and d while achieving a satisfac-
tory statistical risk bound (e.g., a fractional power
of d/N) for a sensible class of target functions, where
N is the sample size. It is not known whether such
a feasible algorithm exists. Because of its poten-
tial practical implications, I regard the resolution of
problems of this type as the most important task for
theoretical research concerning neural networks.

Various algorithms have been suggested or used
in practice that may or may not be appropriate for
the function estimation task. Here, some of the
standard approaches and associated problems are
briefly mentioned. Many of the methods involve nu-
merical search for an optimum of an empirical ob-
jective function. Unfortunately, this error surface
for multiunit perceptrons is extremely multimodal
as a function of the parameters (weights).

Gradient search and many of its variants, such as
back-propagation, produce a local optimum of du-
bious scientific merit. The use of multiple start-
ing points may rescue local search strategies, but
it should be mathematically determined whether or
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not the number of restarts needed on the average is
exponential in thesize of the problem. The objec:
tive function may be regularized by the addition of
a large enough convex penalty term (weight decay
term) to reduce multimodality, but can it be demon-
strated whether the function estimates remain sta-
tistically accurate in that case? A concern is that
if a penalty term is multiplied by a constant large
enough to guarantee convexity of the objective func-
tion, then the effect of the empirical loss term may
be washed out.

Stochastic search strategies such as simulated an-
nealing or guided random search can avoid traps
of local optima to converge to a global optimum,
but it needs to be proven whether an accurate esti-
mate is reached in feasible time for perceptrons. See
Bertsimas and Tsitsiklis (1993) for some of the is-
sues associated with proving a computation rate for
simulated annealing. Convergence theory for ran-
dom search should reveal what advantage, if any,
the search strategy has over exponential time al-
gorithms such as exhaustive search over a suitable
grid.

Likelihood maximization can be replaced by av-
eraging with respect to a Bayesian posterior dis-
tribution using importance sampling or Metropolis
algorithms, but it is not proven whether these al-
gorithms will provide suitable solutions in feasible
time for highly multimodal surfaces. Indeed, sup-
pose it were not feasible to find points of high like-
lihood that provide an accurate estimator. It would
then be surprising (but not necessarily impossible)
for an averaging technique to produce an accurate
estimator.

The computational task is simplified by certain
estimation strategies that build up a network one
unit at a time. At each stage, the parameters of a
new unit are to be determined given that the smaller
network has been estimated. In some cases, convex
objective functions can be defined that are readily
optimized at each stage. One such class of network
methods use compositions of small polynomial units,
each of which is linearly parameterized and opti-
 mized by least squares (Farlow, 1984; Barron and
Barron, 1988). Another approach involves logistic
sigmoidal units optimized by a relative entropy cri-
terion; see below. It needs to be determined under
what conditions functions can be accurately approx-
imated by such iteratively constructed networks.

Some progress has been made in the case of a
single hidden layer network with a squared error
criterion. Optimizing such networks one node at
a time provides a lower dimensional multimodal

search task while still permitting an accurate ap-
proximation (Jones, 1992; Barron, 1993). In partic-
ular, suppose a function f is such that f(x)/V is in
the closure of the convex hull of the set of functions
d(wx + wp) (and for simplicity, assume odd symme-
try ¢(—2z) = —¢(2)). Let fo(x) =0 and for M = 1,2,...
iteratively define fi/(x) = vify—1(x) + vad(wx + wy),
where the internal weights wg, w of the Mth unit are
found to maximize the inner product of the function
ry—1(x) and ¢p(wx+wyp), where ryr_1(x) = f(x)—fa—1(x)
and then the external linear weights vy, vy are opti-
mized by ordinary least squares. Then ||f — fu|| <
2V/vM which is the same order bound as stated
above for noniterative approximation. Thus, the
search has been reduced from M(d + 2) dimensions
down to d + 1 dimensions, but the objective function
still may have multiple modes for each M. It re-
mains to determine whether it is possible to provide
approximate solutions to this simpler optimization
(perhaps by a stochastic search or multistart algo-
rithm) in a time that is not exponentially large in d.

An interesting approach worthy of further study
is to choose wy,w for unit M to minimize the av-
erage binary relative entropy D(g,¢) = glogg/¢ +
(1-2)1og(1—g)/(1 — ¢) between the functions g(x) =
1/2 + ry_1(x)/2V and ¢(wx + wyp), with ¢ chosen to
be the logistic sigmoid ¢(z) = €*/(1 + ¢°) and ry(x) =
f(x) — fu(x). With this choice, the objective function
is strictly convex in wy,w and an approximate min-
imizer is readily computed for each M by gradient
or Gauss-Newton search as in logistic regression.
Now ry(x) = 0 is a fixed point of these iterations. It
may be possible to prove that f — fys tends to zero as
M — oo. Does it have the same 1/v/M approxima-
tion rate? The problem of computational feasibility
of accurate network estimation would be solved by
the positive resolution of this approximation ques-
tion.

SUMMARY

I concur with the conclusions of Cheng and Tit-
terington that research in statistics and artificial
neural networks is mutually beneficial and that in-
creased awareness of work in the respective disci-
plines should be encouraged. It should be important
to each field not only to acknowledge existing work
from both fields but also to put it to use to advance
the state of the art. Combined use of approxima-
tion theory, mathematical statistics and computa-
tion theory are essential to the treatment of funda-
mental problems of function estimation and neural
networks.
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Comment

Elie Bienenstock and Stuart Geman

According to the authors, this paper has three
principal goals: “informs a statistical readership
about Artificial Neural Networks (ANNSs), points out
some of the links with statistical methodology and
encourages cross-disciplinary research....” It seems
to us that the authors have been spectacularly suc-
cessful with regards to the first two of these goals,
and it is likely that this paper will do much to fur-
ther stimulate the already active scientific exchange
between the statistics and neural modeling commu-
nities.

As Cheng and Titterington made clear, neural net-
works, at least the very popular examples reviewed
in their paper, are not really new inasmuch as they
represent variations on common statistical themes,
especially nonparametric and semiparametric esti-
mation and classification. Furthermore, Cheng and

_Titterington suggest that the tie to real neurons
may be somewhat tenuous (we will amplify on this
shortly). Nevertheless, despite this dubious bio-
logical connection and strong ties to already well-
studied statistical methods, this field has attracted
wide attention from within the government (prin-
cipally the Department of Defense but also other
branches including the Department of Commerce)
as well as many sectors of industry. It has drawn
many top science students at our top schools. In the
meantime, many statistics departments complain
that it is hard to find first-rate graduate students.

We would like to use this discussion to speculate
about the reasons behind the fantastic growth of
the neural modeling field, especially in light of the
close ties to well-studied areas of statistics which
have themselves been received with substantially
less enthusiasm. There are many reasons for the
remarkable popularity and visibility of neural net-
works. We will propose a few and suggest that some
of them may be based partly on misconceptions.

THE APPEAL OF BRAIN MODELING

The endeavor is nearly irresistible: building mod-
els and machines possessing a measure of human
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intelligence, working through the puzzles of percep-
tion and cognition and “explaining” the brain. In-
deed, many researchers in the neural modeling com-
munity believe that the kinds of networks discussed
by Cheng and Titterington are meaningfully con-
nected with biology, providing a starting point from
which we can begin to organize and understand the
overwhelmingly complex anatomical and physiologi-
cal data, and from which new kinds of theoretically-
directed biological experiments will emerge. Still,
most neural modelers would agree that these at-
tempts are nothing more than the crudest of ap-
proximations not to be taken seriously as models
of real neurons or real neuronal interactions at the
level of any important detail. Cheng and Tittering-
ton have already remarked that “it is clear that the
brain does not learn by the generalized delta rule.”
It is also clear that there is very little in the way of
feedforward networks in the brain (virtually all sub-
stantial pathways are reciprocated making it clear
that the dynamics is not that of a feedforward net-
work) and that the real equations of synaptic mod-
ification are a good deal more complicated than a
Hebbian or gradient-descent rule. In short, ANNs
are hardly neural.

THE APPEAL OF “GENERALIZATION”

Model-free generalization has served as a kind
of Holy Grail in neural modeling: begin with a
more-or-less tabula rasa (blank slate, or, in sta-
tistical parlance, “nonparametric”) architecture and
a realistically-sized training set for some challeng-
ing classification or estimation task and devise a
learning rule powerful enough to discover the regu-
larities and invariants that would extrapolate good
performance beyond the training data. Such a de-
vice might be used to “beat the stock market” or
solve the automatic target recognition (ATR) prob-
lem which has resisted many years of expensive
R&D effort. But statisticians know that general-
ization (good performance on samples not in the
training set) depends almost entirely on the extent
to which the training set is representative, and/or
the structure of the problem happens to accommo-
date the models used. It is too much to expect sta-
tistical methods to “discover,” by themselves, com-
plex and nontrivial structure such as the structure
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that defines classes of objects, invariant to light-
ing, shading, texturing, rigid and nonrigid shape
deformations and viewing perspectives. The situ-
ation with pre-segmented hand-written numerals is
quite special: this is a small class of essentially
one-dimensional structures for which very large and
comprehensive training sets are available.

Of course, the problem of recognizing handwrit-
ten numerals is an important one, and there are
many other problems of equal importance which are
equally amenable to neural network and related sta-
tistical approaches. However, it has been observed
many times that for such problems simple nearest-
neighbor methods (or variations on that theme) typ-
ically perform nearly as well (and often better) than
neural networks [see, for example, the thorough ex-
periments by Ripley (1993)]. Evidently, in these
cases “generalization” is mostly a matter of inter-
polation.

We have argued elsewhere (Geman, Bienenstock
and Doursat, 1992) that for many of the more am-
bitious problems for which neural networks have
been proposed (such as ATR, unconstrained hand-
writing recognition or learning complex motor maps
for robot arms with multiple degrees of freedom),
the choice of a suitable statistical method may ul-
timately play only a minor role. The more sub-
stantial challenge may prove to be the choice of ap-
propriate representations, in particular, representa-
tions in which generalization can, in fact, be viewed
as a matter of interpolating a sufficiently rich but
reasonably-sized training set. We would argue, for
example, that unconstrained object recognition will
require the development of representations that are
already nearly invariant to pose, shape, lighting,
etc., and that “learning” such representations from
examples is nearly impossible with realistic training
sets.

Cheng and Titterington remark that two princi-
pal steps in treating a practical problem are (i) the
specification of an appropriate architecture, and (ii)
network training from examples. We would like to
suggest that substantial progress on the more ambi-
tious problems for which neural networks have been
proposed will require a shift in emphasis from issues
of training to issues of architecture—which is to say,
modeling.

PROBLEM SELECTION

Cheng and Titterington began their paper with
a list of currently used—in some cases about-to-be-
used—applications of ANNs. The list is impressive,
and one could no doubt add more items to it, such as
the various applications to high-energy physics (e.g.,

see Denby, 1993) to mention but one area. The fact
that ANNs have been successfully applied to work
with real data for substantial problems in speech
synthesis (NETtalk), speech recognition, character
recognition and robotics has certainly contributed
much to their appeal. However, it should be men-
tioned that there is the tendency to somewhat ex-
aggerate the successes. After about ten years of in-
tense activity in the field, the number of concrete
industrial applications is still rather limited. Many
“applications” are really demonstrations, and it is
often the case that neural nets are outperformed by
(less general) ad hoc solutions. This, for example,
is the situation with NETtalk, as Cheng and Titter-
ington have pointed out.

PACKAGING

The importance of an appealing presentation can-
not be ignored, even in science. Cheng and Tit-
terington rightly remark that ANNs are sometimes
perceived, from the perspective of statisticians, as
“familiar entities” with a representation that is
“usually pictorial.” Although the last two words ap-
pear in parentheses in the paper, they could actually
be taken as one of the main take-home messages.
What is a radial-basis-function ANN if not a ker-
nel method for regression with a picture? Figure 8
is the picture of a two-layer perceptron, but this is
nothing more than a particular nonlinear regression
model. In fact, wording itself can play a substan-
tial role. Contrast the very intuitive notions used
in the definition of Boltzmann machines—hidden
units; clamped and unclamped dynamics; Hebbian
synaptic plasticity—to the rather unappealing sta-
tistical terminology (to quote again from the paper):
“a version of the iterative proportional fitting pro-
cedure used in analyzing multiway contingency ta-
bles.” For that matter, also consider the phrase
“Boltzmann machine” against “semiparametric es-

‘timation via maximum likelihood.”

We would like to conclude by observing that, de-
spite these reservations, there is little doubt that
the popularity of ANNs has had, and continues to
have, a very positive effect on scientific research. It
has brought together scientists from diverse disci-
plines to work on important and interesting prob-
lems (numerous prominent theoretical physicists,
mathematicians, computer scientists and biologists
have adopted the field as a kind of second career),
and it has done much to advertise the enormous po-
tential of statistics for addressing a host of modern,
“high-technology,” problems. Cheng and Tittering-
ton’s paper should be welcomed as further encour-
agement to this kind of important cross-disciplinary
research.
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Comment

Leo Breiman

Cheng and Titterington have most commendably
brought developments in the neural network field
to the attention of statisticians. It is a notable pub-
lic service. Since their title is worded “...A Review
from a Statistical Perspective”, room is left for other
statistical perspectives.

When I first heard about neural networks some
years ago, I was put off by what I considered to be
the hype about doing things the way the brain does.
The going propaganda seemed to be that here was a
set of procedures modeled after the brain that did a
miraculously accurate job in a wide variety of tasks.

- The functioning of these procedures was coded in es-
oteric language based on terms borrowed from brain
mechanisms. The whole thing was reminiscent of
the artificial intelligence publicity a decade or two
ago.

But in going to neural network meetings, reading
and refereeing their articles and talking to many
practitioners over the last five years, my opinion
has changed. The neural network community con-
sists of different segments. Some are concerned
with constructing mathematical network models of
the brain. Others are concerned with networks as
mathematical entities, that is, their connectedness,
dynamics, etc. Probably the largest segment con-
sists of the people doing work on pattern recognition
and other predictive problems.

1. THE CHARACTERISTICS OF THIS LATTER
COMMUNITY

They are not a neural network community. They
use any methodology that works on their prob-
lems. Often, they use CART or MARS. They exper-
iment with nearest neighbor methods, separating
surfaces gotten by using linear programming, radial
basis functions, hidden Markov chains, etc. New
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methodologies are constantly proposed, and many
of these have little resemblance to standard neural
networks. Unfortunately, much of the original, and
now anachronistic, terminology is retained giving
misleading impressions about what is going on.

They are very pragmatic and problem oriented.
In fact, the field is better defined by the nature of
the problems they work on then by any particular
methodology. Typical problems are speech recog-
nition and handwritten character recognition. The
range of problems is characterized by high dimen-
sional complex data, often with very large sample
sizes (10* to 107). The goal is to find accurate pre-
dictors in classification, regression and time series.

Often, the methodology they use is hand-tailored
to the problem they are working on. In this respect,
the neural network technology is attractive in that
the network and the number of internal nodes can
be tinkered with and optimized for the problem. But
other methods are employed if they give better re-
sults.

Their bottom line is the error rate on the relevant
data set. Proposed new methodologies are judged in
terms of their error rates on banks of known data
sets. But there is little systematic research into the
circumstances under which some methods work bet-
ter than others. This may be because the work is
so oriented toward particular problem solving and
tailored methodologies.

The people involved are, by background, computer
scientists, engineers and physical scientists. They
are generally young, energetic and highly computer
literate. They have the further good fortune not
to have any formal statistical training so that they
feel no compulsion to engage in the futile games of
modeling data or in endless asymptotics. What they
have borrowed from statistics is very slight.

There are important cultural differences between
the statistical and neural network communities. Ifa
statistician analyzes data, the first question he gets
asked is “what’s your data model?” The NN prac-
titioner will be asked “what’s your accuracy?” In



NEURAL NETWORKS: A REVIEW FROM A STATISTICAL PERSPECTIVE 39

statistics, high dimensionality (number of parame:-
ters estimated) is 5, maybe 20, and 100 is impres-
sive. In NN problems, 100 is moderate while 1000
and 10,000 are more like it. Statisticians go for
interactive computing. A NN member might say
“what, only an overnight run? It must be a pretty
small problem.”

Another difference is that statisticians tend to
try and develop universal methodology. That is,
methodology that can be applied, virtually un-
changed, in every environment. For instance, CART
has been used, in untinkered form, in dozens of dif-
ferent fields. The NN workers, as mentioned above,
tinker and tailor, cut and slice until the suit fits the
data.

2. LOOKING AT THE NEURAL NETWORK
METHODOLOGY

In the present prediction context, what is given is
a set of data consisting of the variables to be used as
predictors (usually denoted as a vector x) together
with the associated values of the things (responses)
to be predicted. This data is known as the training
set or as the learning set. The goal is to use this data
to construct a predictor of future responses based
only on knowing x.

The neural network configuration most often used
in prediction is called the single layer feed forward
network. This has been covered by Cheng and Tit-
terington, but I want to go through it again for sev-
eral reasons. First, because it is the type of neural
network most widely used in prediction. Second, be-
cause its success in some important problems was
largely responsible for the surge of interest in these
methods. Finally, because its structure is simple,
we can hope to get some idea of its workings.

The idea is this: let the sigmoid function o(x) =
exp(x)/(1 + exp(x)). Then fit the data by linear com-
binations of ¢ (linear combinations of the predictor
variables). In regression where the training data is
of the form (y,,x,),n=1,...,N and x has M coordi-
nates x1,...,%y, X1 = 1, fit the data by a sum of the
» form ’

@) =Y apo(Be).
k

In a J class problem, the training data is of the
form (j,,x,),n =1,...,N, where each j, is a class la-
bel taking value in {1,...,J}. Then the conditional
probability for each class is estimated by a function
of the form

pjlx)=0 (Z ajko(,@kx)> ,
k

and the decision rule is to predict the class corre-
sponding to the vector x as j if

B(j| %) = maxpti | ).

To estimate the coefficients in regression, the least
squares error L is defined by

2
Lap=3 <y,, - zakowkx,») .
k

n

Then L is minimized using gradient descent. In
classification, define z;, = 1 if j, =j, otherwise zero.
Put

2
L,®=) (zjn -0 <Z ajko(ﬂkxn)))
k

J.n

and again minimize L by gradient descent. The gra-
dient descent most commonly used is called back-
propagation and consists of putting in one data case
at a time and then taking a partial gradient step.
The data set is circulated through until the conver-
gence is deemed satisfactory.

This is a simple and easily programmed idea.
Since its introduction, it has been used in a wide
variety of important engineering and computer ap-
plications with almost universally “satisfactory” re-
sults. In fact, it has become an all purpose crank.
For many hopeful users, it relieves the tedium of
thinking.

For instance, consider a problem that consists of
classifying 32 x 32 bit images with each pixel in 16
grey levels and such that there are 26 classes. Note
that each prediction vector x is of dimension 1024.
Before the NN technology, researchers would puz-
zle over the images and try to extract a few fea-
tures (functions defined on each image) that would
contain most of the relevant classification informa-
tion. Having drastically reduced the dimensionality,
some standard classification methods could be used
on the feature values.

Now the procedure is to toss the data directly into
the NN software, use tens of thousands of param-
eters in the fit, let the workstation run 2-3 weeks
grinding away doing the gradient descent and, voila,
out comes the result. Automatic feature selection
has taken place.

There are pluses and minuses to the NN crank.
Prior to the crank, the only widely available meth-
ods were nearest neighbor templates, linear meth-
ods and various kludges. The NN crank is a widely
applicable nonlinear method that usually gives good
results.
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3. BUT ALL IS NOT TEA AND CRUMPETS

The NN crank may not work well without a lot of
tuning and tinkering. A number of initial decisions
have to be made to run the program. For instance,
how many sigmoids to use in the fit? (In their lan-
guage, how many nodes to use in the hidden layer?)
Each additional sigmoid used introduces M + 1 addi-
tional parameters to estimate. If too many sigmoids
are used, there is the possibility of overfitting the
data; too few and the data may be underfit.

Another problem is what initial values of the pa-
rameters to use. Gradient descent finds a nearby
local minimum and the nonlinear surface generated
by sums of sigmoids is guaranteed to have many lo-
cal minima. One way to find the global minimum
is to run the procedure many times starting from
randomly selected initial values. But the lengthy
running times of neural networks rule this out.

In my discussions with many practitioners con-
cerning this problem, I ran into two schools of
thought. One was “don’t worry, all local mins give
about the same accuracy.” The second, and more
surprising, was “never run for so long that you get
into a local minimum.”

The latter prescription defies the usual descrip-
tions of how neural networks methodology works.
But it seems to be followed by many of the most ex-
perienced and successful practitioners. The idea is
this: given that you are minimizing over thousands
of parameters, if you fall into the bottom of a mini-
mum then you are overfitting the data. The “smart
thing” to do is to set aside a test set, stop the pro-
gram at various times, run the test set down the
current predictor and select that point in the run
that gives minimum test set error.

There are other recipes for avoiding overfitting.
For instance, another current recipe is the use of
regularization (aka “weight decay” in NN terms).
Here, instead of minimizing the error sum of
squares, a penalty term is added consisting of the
sums of squares of the coefficients multiplied by a
parameter to be determined. This method takes re-
'peated runs, much more computing, and does not
seem to have been widely adopted. Still another
recipe advanced to me by knowledgeable users is to
stop the run at various times and delete “inactive”
variables from the fitting procedure.

Experienced users know how to tinker, cut and
paste. They have their own ways of adjusting the
number of nodes in the hidden layer to get good per-
formance, and of preventing overfitting. But most of
this is folk wisdom, and there is, so far, no handbook
on the sacred mysteries.of neural network tinkering.

There is nothing wrong with tinkering, but not
enough is known about how best to tinker. There is
not enough known about performance of neural net-

works on simple simulated data. We need to know
more about the whys and wherefores, ifs and buts
of NN performance.

4. ALTHOUGH SOME METHODS ARE USUALLY
GOOD, NO METHOD IS ALWAYS BEST

Neural networks cannot satisfy the desire for ulti-
mate optimality. It has become increasingly clear to
the NN community that no one prediction method
will be universally most accurate on all data and
that what is best depends on the structure of the
data. Because of this, a cottage industry in the in-
vention of new methods has risen.

The methods generally fall into one of two cate-
gories. The first I call global. These methods (like
neural nets) use the training data to estimate a
global prediction surface. Local methods make a
local prediction for each new vector x. For instance,
in classification, the class predicted for x may be the
class of its nearest neighbor in the training data.

To understand what is different and new about
neural networks, we give a brief and selective
overview of global methods currently used in non-
linear analysis.

5. GLOBAL METHODS

All current global predictive methods use selec-
tion of elements from a large set of basis ele-
ments. That is, one specifies a set of basis functions
{B(x,0)},0c0, defined on the space of predictor vec-
tors such that “most” functions of x are in the span
of the basis. Then, in regression, one uses a predic-
tor function of the form

9@) = B, 0).
k

In classification, conditional probabilities are esti-
mated as

plx)=G (Z o B(x, 9k))
k

for some specified function G. Here are some exam-
ples:

Neural Nets: {B(x,0)} = {0(0 - x)},© = {EM}.

CART: {B(x,0)} = {I(xeR); R a rectangle in E¥, I an
indicator function} Basis elements I(xcR}) are
selected such that the {R;} are disjoint with
union EM,

MARS: {B(x,0)} = {II;(x(xy; — 0:)*}, i.e., basis el-
ements are products of a finite number of uni-
variate linear splines.
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For all of these sets of basis functions, various com-
pleteness theorems are known. These have the
form: for all f(x) of some specified smoothness and
any ¢ > 0, there exists K, {ag,0:}, 2 =1,...,K such
that

IFG) = > B, 6] < e.
k

This is comforting, but it leaves open questions im-
portant to applications:

What are good sets of basis functions?
How can a “good” subset of basis functions
be selected?

There are drawbacks to the basis elements used in
CART and MARS. CART can lose accuracy because
its basis elements are discontinuous and are aligned
with the coordinate axes. The MARS basis elements
are continuous but unbounded. Also, with a high
dimensional data set, it is not computationally fea-
sible to include basis functions that are products of
more that a few univariate splines.

The strategies familiar to statistics for selecting
basis elements consists of stepwise “optimal” ad-
dition. For instance, in CART each current basis
function is “optimally split” to give two new basis
functions. A similar strategy is used in MARS. Be-
cause of this stepwise add-one-at-a-time approach
and some clever algorithms, the basis selection pro-
cedure goes very rapidly. On the other hand, neu-
ral networks optimize the choices over all basis ele-
ments simultaneously using backpropagation.

6. WHAT IS UNIQUE AND DIFFERENT ABOUT
NEURAL NETS?

Having come this far, we are in a position to ven-
ture some guesses as to why neural networks seem
to give good results over a wide range of data bases.
There may be two contributing factors. The first is
that the basis element have desirable properties.

They are very smooth functions of linear functions
, and nicely bounded above and below. Their form,
being close to zero in one portion of the space and
close to one in another portion make them particu-
larly good for approximating conditional probabili-
ties and for approximating local ripples.

Another property may explain why NN users can
throw in thousands of parameters and not have
catastrophic overfitting. Usually, in starting the NN
fit, one uses small random coefficients for the lin-
ear combinations in each sigmoid. If all of the co-
efficients in 8 are small, then o(8x) = .5 + .250x.
Then, the sum over all sigmoid functions whose co-
efficients remain small collapses into a single linear
function with the number of equivalent parameters

equal only to the number of coordinates in the x-
vector.

The other unique element in neural nets is the
idea of simultaneously selecting all basis elements
using backpropagation. My first impression of this
method was that it was bound to fail by winding up
in poor local minima. This does not seem to happen
and the why is mysterious. It may be wound up in
the nature of backpropagation. By this, I mean the
particular procedure of entering one case at a time
and then taking a partial gradient step.

For instance, the general wisdom is that one-case-
at-a-time works better than putting in all of the data
and doing “batch” gradient descent. Certainly, there
are much faster methods for nonlinear optimization
than gradient descent. But while these are faster,
it is not known if they produce the accuracy given
by backpropagation.

There is some research that claims to establish
a link between backpropagation and stochastic op-
timization methods known to converge a.s. to the
global optimum. If this is even partially true, then
the method’s largest drawback, its painfully slow
running time, may also be a source of its consistent
accuracy. Unfortunately, this is largely unexplored
territory.

A possibility that Jerry Friedman and I are ex-
ploring is stepwise entry of sigmoid basis functions.
We have designed a fast algorithm for stepwise en-
try of sigmoid functions patterned after the stepwise
entry of hinge functions given in Breiman (1993).
The procedure produces fits to the data in several
orders of magnitude less running time than back-
propagation. We have not done enough testing to
know if the accuracy is competitive with neural net-
works using backpropagation.

7. CODA

I am fond of the saying “give a man a hammer and
every problem looks like a nail”. The NN community
has their hammer. But they are also hard at work
devising pliers, saws, chisels and a full repertory of
tools, large and small. Interesting new methods are
spawned at an almost alarming rate.

Among many recent results, here are a few that
impressed me: A smart new metric leads to a near-
est neighbor misclassification rate on optical char-
acter recognition about half that of a well-tinkered
neural net procedure (Simard, Le Cun and Denker,
1993). Coding problems involving many classes into
a sequence of two class problems results in signifi-
cant decreases in error rates (Dietterich and Bakiri,
1991). Combining (“stacking”) dissimilar classifiers
also gives reduced error rates (Wolpert, 1992). Us-
ing linear programming methods to get nonlinear
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separating boundaries between classes gives error
rates on optical character recognition lower than
neural nets (Boser, Guyon and Vapnik, 1992).
Often the analogies and language used in the NN
community obscure the data analytic reality. There
is a lack of reflective introspection into how their

methods work, and under what data circumstances.
But these lapses are more than offset by the com-
plexity, interest, size and importance of the prob-
lems they are tackling; by the sheer creativity and
excitement in their research; and by their openness
to anything that works.

Comment: Neural Networks and Cognitive
Science: Motivations and Applications

James L. McClelland

Artificial neural networks have come and gone
and come again—and there are several good rea-
sons to think that this time they will be around for
quite a while. Cheng and Titterington have done an
excellent job describing that nature of neural net-
work models and their relations to statistical meth-
ods, and they have overviewed several applications.
They have also suggested why neuroscientists inter-
ested in modeling the human brain are interested in
such models. In this note, I will point out some ad-
ditional motivations for the investigation of neural
networks. These are motivations arising from the
effort to capture key aspects of human cognition and
learning that have thus far eluded cognitive science.

A central goal of congnitive science is to under-
stand the full range of human cognitive function.
During the 1960s and 1970s, when symbolic ap-
proaches to human cognition dominated the field,
great progress was made in characterizing men-
tal representations and in capturing the sequen-
tial thought processes needed, for example, to solve
arithmetic problems, to carry out deductive reason-
‘ing tasks, even to prove theorems of logic from given
axioms. Indeed, by 1980 a general computer pro-
gram for solving integro-differential equations had
been written. These accomplishments are certainly
very valuable, yet they still leave many scholars of
cognition with the very strong feeling that some-
thing very important is missing. Efforts in machine
recognition of spoken and visual input, machine un-
derstanding of language, machine comprehension
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and analysis of text, not to mention machine im-
plementation of creative or insightful thought, all
continue to fall short. A huge gap remains between
the capabilities of human and machine intelligence.
The interest in the use of neural networks among
cognitive scientists springs largely from the hope
that they will help us overcome these limitations.
Although it is true that there is much to be done
before this hope can be fully realized, there are
nevertheless good reasons for thinking that artifi-
cial neural networks, or at least computationally
explicit models that capture key properties of such
networks, will play an important role in the effort
to capture some of the aspects of human cognitive
function that have eluded symbolic approaches. In
what follows I mention two reasons for this view.
The first reason arises in the context of a broad
class of topics that can be grouped under the rubric
of “interpretation.” A problem of interpretation
arise whenever an input is presented to the senses,

- be it a printed digit, a footprint, a scientific argu-

ment or a work of creative expression such as a
poem or a painting. The problem is to determine
what the thing is or what it is intended to signify.
The problem is difficult because the direct data is
generally insufficient so that the ability to deter-
mine the correct interpretation depends on context.

Let us consider two examples. The first, shown in
Figure 1, is from Massaro (1975) and illustrates the
role of context in letter recognition. The same input
gives rise to two very different interpretations de-
pending on the context in which it occurs. The sec-
ond comes from very simple stories of a kind studied
by Rumelhart (1977):

Margie was playing in front of her house
when she heard the bell on the ice
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be cool

FIG. 1. The same visual configuration can be interpreted as two different letters, depending on the context. Reprinted with permission

from Massaro (1975) p. 382.

cream truck. She remembered her birth-
day money and ran inside the house.

In this case, human readers have no trouble figuring
out that Margie’s birthday money is probably in the
house and that she probably ran in to get it so that
she could buy herself ice cream. Obviously, this in-
terpretation, engendered by the second sentence of
the above story, would not arise if the context were
changed:

Margie lived in a dangerous neighborhood
with lots of drug addicts always on the
lookout for innocent passers-by to rob. She
was coming home from a birthday visit to
her grandmother when she saw a couple
of the addicts loitering at the corner near
her house. She remembered her birthday
money and ran inside the house.

What the Massaro and Rumelhart examples have in
common is the fact that the direct information—the
shape of the character, the words in a sentence—is
often not enough by itself to get the correct inter-
pretation. But context is not in general enough by
itself—indeed the context often provides only very
general and indirect constraints. What one is left
with is the sense that it is the aggregated influence
of the sum total of the cues rather than any one
operating individually that is of crucial importance.
Indeed, in real situations it is often the case that
ambiguity remains once all the factors have been
taken into account. Many psychologists have long
argued that it is reasonable to view all acts of inter-
pretation as closely related to Bayesian inference, in
that they involve the weighted combination of var-
ious direct and contextual cues together with prior
biases. Signal detection theory (Green and Swets,
1966), based on a Bayesian analysis of decision mak-
ing under uncertainty, is a centerpiece of this line
of thinking. '

As Cheng and Titterington point out, neural net-
works provide a natural domain for capturing per-

ception and interpretation as probability optimiza-
tion problems in which direct and contextual in-
formation is combined to reach the most likely in-
terpretation given the available input. The use of
graded (real-valued) connection weights allows the
appropriate weighting of different sources of evi-
dence. The process of settling to a stable attrac-
tor state captures nicely the multifaceted nature of
most interpretation problems in which the interpre-
tation of one part of an input both influences and
is influenced by the interpretation of every other
part. Human subjects often behave in ways that
are highly consistent with optimal statistical meth-
ods (Massaro, 1989) and, indeed, connectionist mod-
els that share these properties have been highly
successful in accounting for psychological data from
perceptual decision tasks (McClelland and Rumel-
hart, 1981; McClelland and Elman, 1986; McClel-
land, 1991). A wide range of authors have argued
for the use of similar models in sentence comprehen-
sion, story understanding, visual scene interpreta-
tion and many other related tasks based on the gen-
eral fact that correct interpretation is not in general
possible. The only way to maximize the probabil-
ity of making the correct decision is to exploit all

* sources of information.

A second reason why neural networks are rele-
vant to cognitive science arises in the area of learn-
ing. Psychological research on learning has gone
through many different phases, including a phase
lasting from around 1920 to nearly 1960 where it
was dominated by stimulus-response theories (in
which probabilistic formulations have proven very
useful) and another that arose in the 1950s and per-
sisted into the 1960s in which learning was concep-
tualized in terms of the formulation and testing of
deterministic rules, within the symbolic tradition.
This approach largely gave way in the 1970s and
1980s to a new approach based on the probabilis-
tic use of accumulated knowledge from examples.
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One of the most successful models in this tradition
is a model of category learning due to Medin and
Schaffer (1978). These authors argued that cate-
gory learning occurs through the exhaustive stor-
age of all examples in memory. When a test item
is presented for categorization, it is compared to
all of the examples in memory and each votes for
its own category in proportion to its similarity to
the test item. The probability of choosing a par-
ticular category is equal to the sum of the votes of
all of the known exemplars in the category divided
by the sum of all of the votes. The key point is
that the responses subjects make are probabilistic,
not deterministic; and they reflect the influence of
specific examples rather than general rules. Neu-
ral network models are highly relevant to capturing
this kind of learning since each experience leaves its
own residue in the form of changes to the connec-
tion weights among the units in the network. In-
deed, the Medin and Schaffer model can easily be
formulated as a neural network model, and a re-
cent, highly successful connectionist model of cate-
gory learning due to Kruschke (1992) takes just this
approach. Kruschke’s model makes use of individ-
ual units to represent each exemplar and extends
the Medin and Schaffer model by using an error cor-
recting learning rule to modify the strengths of the
contributions each exemplar makes to the activation
of each of the possible categorization responses.

A related difficulty for deterministic rule systems
arises in various domains of language. In general,
language production and interpretation can both be
thought of as mapping problems in which a message
in one form of representation must be translated
into another form of representation. As two exam-
ples, the problem of producing a verb to describe a
state or action one wishes to convey, and the prob-
lem of producing a spoken sound that corresponds
to a written word can both be thought of as mapping
problems. In general, in natural languages such
problems often involve what might be called quasi-
regular—or even better probabilistic—structure. In
‘mapping from spelling to sound, for example, there
are important regularities; but at the same time
there are many exceptions as well. Often, the ex-
ceptions are not simply isolated individual cases
but are grouped together in clusters; for example,
in English spelling there are many words that vi-
olate the rule that EA corresponds to the long E
sound as in HEAT, most of these words—THREAD,
TREAD, BREAD, etc.,—end in EAD but not all do
(cf. DEAF) and not all of the words that end in EAD
are exceptions to the standard EA correspondence
(cf. BEAD; and the homographs READ and LEAD).
Thus, the relationship between EA and its pronunci-
ation is statistical. Similar statistical relations exist

between the present and past tense forms of many
of the English verbs; thus, many monosyllabic verbs
with the short ‘ih’ vowel followed by a velar conso-
nant (dig, swing) form the past tense by changing
‘ih’ to ‘uh’ (did-dug, swing-swung). Again, the reg-
ularity is statistical rather than deterministic (cf.
sing-sang, and ring, which can be rang or ringed
depending on the meaning intended).

One approach to learning mappings of this sort is
to propose that they are handled by dual learning
systems: one that learns the general rules and an-
other that contains a list of the exceptions (Pinker
and Prince, 1988; Coltheart et al., 1994). A differ-
ent approach, first presented in the Rumelhart and
McClelland (1986) model of past tense formation
and the Sejnowski and Rosenberg (1987) NETtalk
model for translation from spelling to sound, as-
sumes that the entire quasi-regular system can be
acquired in a single multilayer network. These sys-
tems share with the Medin and Schaffer model of
category learning the property that individual items
(in this case words)—especially those that occur fre-
quently in the learner’s experience—influence the
response the network makes to other similar items.
At the same time, they show how these effects
of individual items can cumulate to produce out-
puts for novel items that conform to regularities
that many examples share. There has been con-
siderable debate about the adequacy of these one-
process systems. The first models introduced did
have some inadequacies, but recent models in both
domains (MacWhinney and Leinbach, 1991; Plaut
and McClelland, 1993) address the main concerns
and demonstrate that a single system can be ade-
quate to capture both the regularities and the ex-
ceptions. While it remains debatable whether the
deeper aspects of language can be captured by neu-
ral network models, it seems clear, at least to this
writer, that the problem of translation from streams

 of words to an appropriate semantic interpretation

is quasi-regular (see McClelland, St. John and Tara-
ban, 1989). Thus, it seems very likely that many of
the statistical properties of neural network models
will be evident in any successful model of language
use and language acquisition.

To summarize, two very general and central tasks
for cognitive systems—the task of interpretation
and the task of learning—appear in essence to be
statistical in nature. Artificial neural networks are
attractive mechanisms for modeling such tasks be-
cause, as Cheng and Titterington make clear, neu-
ral networks are essentially devices that imple-
ment statistical processes. Given this, the current
burgeoning of interactions between mathematical
statistics and neural network research is a welcome
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development for cognitive science. Such interactions
will lead to a deeper understanding of the inter-
pretation and learning tasks, and may ultimately
help us to address other cognitive tasks, perhaps
including creative thinking and scientific discovery,
as well.

Comment
B. D. Ripley

Bing Cheng and Mike Titterington have reviewed
many of the areas of neural networks; their paper
overlaps the flood of books on the subject. I also
recommend Weiss and Kulikowski (1991) (Segre
and Gordon, 1993, provide an informative review)
and Gallant (1993) for their wider perspective and
Wasserman (1993) for coverage of recent topics. My
own review article, Ripley (1993a), covers this and
many of the cognate areas as the authors comment.
The five volumes of the NIPS proceedings (Advances
in Neural Information Processing Systems, 1989
1993, various editors) provide a very wide-ranging
overview of highly-selected papers. Much of the
latest work is available electronically from the ftp
archive at archive.cis.ohio-state.edu in directory
pub/neuroprose.

At the time I received this paper to discuss, I had
recently attended a NATO Advanced Study Institute
on From Statistics to Neural Networks (whose pro-
ceedings will appeat as Cherkassky, Friedman and
Wechsler, 1994), which despite the direction of the
title revealed that current thoughts in neural net-
works are not to subsume statistics in neural net-
works but vice versa. Many researchers in neural
networks are becoming aware of the statistical is-

sues in what they do and of relevant work by statis- .

ticians which encourages fruitful discussions.

Cheng and Titterington concentrate on similari-
" ties between statistical and neural network meth-
ods. I feel the differences are more revealing as they
indicate room for improvement on at least one side.
However, I believe the most important issues to be
those of practice which are almost ignored in the
paper. Before I turn to those, there are two points I
wish to attempt to clarify.

B. D. Ripley is Professor of Applied Statistics, Uni-
versity of Oxford, 1 South Parks Road, Oxford
OX1 3TG, United Kingdom. This comment was
written -while on leave at the Isaac Newton Insti-
tute for Mathematical Sciences, Cambridge, United
Kingdom.
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1. PROJECTION-PURSUIT REGRESSION

The connection between multilayer perceptrons
(MLPs) and projection-pursuit regression (PPR) is
much deeper than the authors appear to sug-
gest. Other empirical comparisons (apart from my
own cited in the paper) are given by Hwang et
al. (1992a,b, 1993), and Barron and Barron (1988)
viewed PPR from a network viewpoint. In the au-
thors’ notation PPR is

yi=woi + Y 1uTvp),
%

where I have allowed for multiple outputs. An MLP
with linear output units is the special case of logis-
tic ¢p; of course both PPRs and MLPs can be given
nonlinear output units. Since we can approximate
any continuous v of compact support uniformly by
a step function and can approximate (nonuniformly)
a step function by a logistic, we can approximate 1,
uniformly by a sum of logistics. This fact plus the
(elementary) approximation result for PPR of Dia-
conis and Shahshahani (1984) gives the approxima-
tion results of Cybenko and others. There is a ver-
sion of Barron’s Ly result for PPR by Zhao and Atke-
son (1992). (This point of view, approximating 1
by a simple neural net of one input, corresponds to
organized weight-sharing between input-to-hidden-
unit weights for groups of units, a sensible proce-
dure in its own right.)

These results suggest that the approximation ca-
pabilities of MLPs and PPR are very similar (sug-
gesting an affirmative partial answer to the ques-
tion in Section 7). However, PPR will have an ad-
vantage when there are many inputs, only a few
combinations of which are relevant, in making bet-
ter use of each projection and hence fewer projec-
tions and parameters. My suspicion is that this is
commonly the case.
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2. HANDWRITTEN DIGIT RECOGNITION

The literature on handwriting recognition, es-
pecially studies of Zip-codes, is much misquoted
and I suspect much misunderstood. Many of the
best methods for handwriting recognition depend on
choosing good features, and the lower levels of the
Le Cun system can be thought of as feature extrac-
tion not classification and were originally optimized
by hand. The actual results are often stated con-
fusingly (including in Le Cun et al., 1990). There
is a training set of size 9709, 7291 of which are
handwritten, and a test set of 2007 handwritten
characters plus some others. According to Vapnik
(1992) the test-set error rate for the Le Cun sys-
tem is 5.1% (102/2007) (but the 1990 variant would
appear to achieve 4.6% (92/2007)) against 2.5% for
humans and 3.3% for the best automated system
to date. Undoubtedly, the automated systems have
been optimized for this particular dataset, so these
rates may be a little optimistic.

Later workers have suggested that the hand-
crafting is not necessary and report similar re-
sults from simpler applications of neural networks:
Knerr, Personnaz and Dreyfus (1992) and Martin
and Pitman (1990, 1991). Grother and Candella
(1993) report best results for the probabilistic neu-
ral network of Specht (1990), that is kernel discrim-
inant analysis, using up to 64 principal components
of the 1282 image data as input features. These are
all general purpose methods, at least as much so as
penalized discriminant analysis (PDA) and achieve
error rates of around 2.5%. Against this, the value
of PDA, with an error rate of 8.2%, is surely over-
stated. .

This example shows the difficulty of quoting er-
ror rates without reference to the Bayes risk. The
latter can often be estimated (Fukunaga, 1990;
Ripley, 1994b); but in this case, it must be close
to the error rate achieved by humans. It is also
potentially confusing to quote per-digit error rates
when the task depends on correctly reading whole
Zip-codes. That task has some redundancy (not all
possible Zip-codes are valid nor equally probable)
and high correlation in the errors for the separate
digits. The residual error rate contains both seg-
mentation errors in isolating the digits and plain
errors (wrongly labelled digits). There is substan-
tial interwriter variability, and careful studies (such
as that of Grother & Candella) use different writers
for the training and test sets.

3. OPTIMIZATION IN FITTING MLPs

The comments in Sections 4.2.2 and 4.3.2 hide a
series of very important practical points. Some au-
thors argue that the point of the back-propagation

gradient-descent algorithm is not to minimize E(W)
since doing so will lead to over-fitting. The regular-
ization approach is to add a term to penalize rough
functions (such as weight decay) and so change the
objective to a function we really do want to min-
imize. Other people believe in stopping early as
a means of regularization, although why travelling
along a path in the wrong direction to the nearest
point to a goal is thought a good procedure beats
me. (It also occurs in statistical approaches to to-
mography, e.g., Vardi and Lee, 1993.)

What is clear is that no experienced worker at-
tempts to minimize E(W) alone, and this makes
comparisons of methods difficult. A typical ap-
proach is to stop when the error measure on a val-
idation set starts to rise. This has a number of dif-
ficulties:

e To repeat the point, there is no guarantee that
the path taken is sensible.

e In my experience, the error on the validation
set often rises for a while then falls dramati-
cally before rising again; therefore, it is impos-
sible to know that the best point on the path
has yet been reached.

o The use of a validation set wastes data, and I
suspect that often the test set is used. One ex-
ample, in a textbook, is Thornton (1992, p. 199).

A further difficulty is the prevalence of local min-
ima, which are much more common than comments
in the literature (e.g., Thornton, 1992, Section 13.6)
suggest—it needs careful work to discover many of
the minima of the error surface.

Schiffmann, Joast and Werner (1992) and Jervis
and Fitzgerald (1993) report studies of a wide range
of optimization techniques on a narrow range of
problems, and both review the literature. Their con-
clusions differ, and their experience differs from my
own. It does seem that the more sophisticated meth-
ods (such as quasi-Newton and conjugate gradients)
do best in hard optimization problems, often dra-
matically so (e.g., Grother and Candella, 1993), but
can be beaten by on-line gradient descent methods
on simpler tasks. \

The back-propagation algorithm can be extended
to compute second derivatives in some or all direc-
tions (Bishop, 1992; Buntine and Weigend, 1993;
Pearlmutter, 1994). Interesting developments in
this area include RProp (Riedmiller and Braun,
1992) and scaled conjugate gradients (Mgller, 1993)
which can make use of Pearlmutter’s techniques.

It is worth noting that in the Bayesian approach
the effort of minimization is redirected to integra-
tion over the weights, either by a saddlepoint ap-
proximation or by Monte-Carlo methods (e.g., Neal,
1993). (We will almost never be interested in the
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weights per se despite the emphasis of Section 4.3.5.)
It is not yet clear how much effort is needed to do
the integration well.

4. METHODS FOR CLASSIFICATION

The authors mention Hastie, Tibshirani and
Buja’s FDA in Sections 4.3.1 and 7. These au-
thors and I studied Breiman and Ihaka’s unpub-
lished 1984 paper to see if such simple results had
a simple explanation and rederived the results via
canonical correlations. My version will appear in
Ripley (1993b, 1994b) and in detail in Ripley and
Hjort (1994).

For two normally distributed classes with a com-
mon covariance matrix, it is well known that the
sample linear discriminant (LDF) is more efficient
than logistic discrimination since it uses full rather
than conditional maximum likelihood and that the
LDF can be found by regression up to the additive
constant.

We can think of the linear regression as the best
linear approximation to the posterior probabilities
and extend this to more than two classes. As a
principle of classifier design, this has been used
(Duda and Hart, 1973; Devijver and Kittler, 1982;
Fukunaga, 1990) under the name of minimum
(mean) square error classifiers. Unlike the linear
discriminant, this procedure classifies by the near-
est target or equivalently the largest component of
a regression for each class indicator. What Breiman
and Thaka showed is that the regressions span the
same space as the canonical variates and that the
linear discriminant classifies by choosing the near-
est target in a non-Euclidean metric in that space.

Neural networks (at least, MLPs and RBFs) are
nonlinear regressions. This suggests a number of
ways to use them for classification:

e (What Hastie, Tibshirani and Buja, 1992,
called FDA). Regress the class indicators on the

input variables and use LDA in the space of fit- .

ted values. Equivalently, encode the classes in
scores and regress the scores on the inputs.

e Use the functions in a nonlinear model for the

' log posterior probabilities. This is sometimes
known as softmax in this field and fitted via
maximum likelihood and is possibly penalized
by, say, weight decay.

e Use the functions for separate nonlinear lo-
gistic models for each class versus the rest,
as in an MLP with. logistic output units. Al-
though apparently less sensible than the previ-
ous method, this is by far the most commonly
used, for example, in the Le Cun study.

e Choose well-separated scores for the classes
and regress on the inputs (Dietterich and

Bakiri, 1991).

The authors appear to prefer the first method, but
they probably have no practical experience. I have
found a number of difficulties, over many experi-
ments, that stem from the need to estimate the
within-class covariance in the space of fitted val-
ues. For fits from nonlinear regressions (includ-
ing MLPs, RBFs, MARS and projection pursuit re-
gression) the covariance matrix can be dominated
by outliers; and even with robust estimation, it can
be insufficiently well determined. My current pref-
erence is for the second approach, but this raises
problems for techniques such as MARS that are tai-
lored to least-squares fitting. My impression is that
how the flexible family of functions is used is much
more important than which family is chosen.

5. WHAT CAN NEURAL NETWORKS ACHIEVE?

It is no accident that all the real examples Cheng
and Titterington chose are classification problems;
in my reading, these form over 90% of the applica-
tions with regression techniques being used in time
series (Weigend and Gershenfeld, 1993) and con-
trol (Miller, Sutton and Werbos, 1990). Great ad-
vances have been claimed for neural networks, but
more careful studies have shown that in many of the
cited examples statistical methods can do as well
or even much better. (For NETtalk, Wolpert, 1990;
for digit recognition, Grother and Candela, 1993; for
the sonar problem of Gorman and Sejnowski, 1988a,
b; Ripley, 1994a.) Often linear methods or k2-nearest
neighbour methods, used carefully, will do as well as
neural networks.

There should, though, be a place for methods be-
tween the linear parametric methods and wholly
nonparametric methods for highly-parametrized
methods such as MLPs, RBFs, MARS and projection
pursuit regression, especially in problems with sig-
nificantly curved structure and relatively few data
points.

One thing clients often require is to be able to un-
derstand the classifier. This is difficult with black-
box systems such as neural networks and is of-
ten claimed as an advantage of machine-learning
systems such as tree- and rule-induction systems
(Quinlan, 1993; Thornton, 1992). This may be true
if there is a simple true classifier. In other cases,
the true relationship between classes appears to be
too complicated to be perceived easily (such as the
forensic glass example in Ripley, 1994a, b). Humans
often find rules easiest to comprehend; and any clas-
sifier can be approximated by a rule system, for ex-
ample, by generating examples from it and inducing
rules from these (as in Gallant, 1993 or Quinlan,
1993).
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Issues of choosing model complexity and assess-
ing performance and “generalization” (Section 4.3.4)
are among the most important open questions.
There is some evidence that methods such as cross-
validation and AIC are too “local” to fully assess the
variability of very flexible methods; therefore some
of the assessed benefits of nonlinear methods may
be illusory. [On “generalization”, Haussler (1992)
is a far-reaching extension of the ideas of VCdim
to which statisticians, especially David Pollard and
Luc Devroye, have contributed; and Anthony and
Biggs (1992) is an introductory text on the seminal
ideas of Blumer et al., 1989.]

One thing statisticians can contribute to the de-
bate is experience in careful use of sophisticated
nonlinear methods. Software is readily available,

Comment
Robert Tibshirani

Cheng and Titterington’s paper is a scholarly
overview of the field of neural networks. It should
raise the statisticians’ awareness of this interest-
ing and important field. One of the authors’ objec-
tives was to encourage cross-disciplinary research
between neural network researchers and statisti-
cians. Here at the University of Toronto, I have
been collaborating informally with Geoffrey Hinton
of the Computer Science department, and I think
that this collaboration has been fruitful for both of
us.

First I would like to make a general point draw-
ing a distinction between statistics and neural net-
works:

Statisticians tend to work with more interpretable
models, since measuring the effects of individual in-
put variables, rather than prediction, is often the
purpose of the analysis.
 Having said that, there is still much that one field
can learn from the other. I will briefly summarize
some of the main points:

WHAT THE STATISTICIAN CAN LEARN FROM
NEURAL NETWORK RESEARCHERS

1. We should worry less about statistical optimal-
ity and more about finding methods that work,

Robert Tibshirani is Associate Professor, Depart-
ment of Preventive Medicine and Biostatistics, Uni-
versity of Toronto, 12 Queens Park, Toronto, Ontario
M5S 1A8, Canada.

including in S, and I would encourage statisticians
to experiment rather than quote inadequately de-
signed propaganda studies.

To end on a positive note, some very impres-
sive applied statistics is being done using neural
networks, and the explosive growth of the subject
has opened the eyes of some statisticians (includ-
ing myself) to the complexity of problems that may
be fruitfully attacked by nonlinear methods. I and
others have been particularly impressed by some
work of my Oxford Engineering Science colleague,
Lionel Tarassenko, on analyzing sleep EEG data us-
ing both Kohonen nets and radial basis functions
to detect structure and anomalous signals (Roberts
and Tarassenko, 1993, 1994).

especially with large data sets.

2. We should tackle difficult real data problems
like some of those addressed by neural network
researchers, like character and speech recogni-
tion and DNA structure prediction. As John
Tukey has said, it is often better to get an ap-
proximate solution to a real problem than an
exact solution to an oversimplified one.

3. Models with very large numbers of parameters
can be useful for prediction, especially for large
data sets and problems exhibiting high signal-
to-noise ratios.

4. Modelling linear combinations of input vari-
ables can be a very effective approach because
it provides both feature extraction and dimen-
sion reduction.

5. Iterative, nongreedy fitting algorithms (like
steepest descent with a learning rate) can help
to avoid overfitting in models with large num-
bers of parameters.

6. We (statisticians) should sell ourselves better.

WHAT THE NEURAL NETWORK RESEARCHER
CAN LEARN FROM STATISTICIANS

1. They should worry more about statistical opti-
mality or at least about the statistical proper-
ties of methods.

2. They should spend more effort comparing
their methods to simpler statistical approaches.
They will be surprised how often linear regres-
sion performs as well as a multilayered percep-
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tron. They should not use a complicated model
where a simple one will do.

The history of the projection pursuit regression
(PPR) model illuminates some of the differences be-
tween the two fields. As noted by Cheng and Tit-
terington, the PPR model has the same form as a
single layer perceptron. When PPR was introduced
into the statistics field by Friedman and Stuetzle in
1981, it did not have much practical impact. There
are a number of possible reasons for this. Compu-
tationally, it was ahead of its time: many statisti-
cians still do not feel comfortable using very large
amounts of computation in an analysis. In addi-

Rejoinder
Bing Cheng and D. M. Titterington

We are very grateful to the discussants for the
time and effort they have expended in comment-
ing on our paper. When we submitted the revised
version of the paper, we felt some trepidation that,
in spite of our best effort at brevity, the paper still
seemed very long in comparison to many other con-
tributions to the journal, and yet we were fully
aware that we had not done justice to important
aspects of the field. Fortunately, some of our sins
of omission have been absolved by the choice of dis-
cussants, and we are happy to regard many of their
comments as complementary to our presentation.
Statistical Science can, therefore, be said to be pub-
lishing a 10-author review of the interface between
statistics and neural network research rather than a
two-author review plus discussion. We are glad that
the discussants include representives from what one
may call (against Breiman’s advice) the mainstream
neural-network community (McClelland), as well as
distinguished statisticians with both short and long

»(in terms of time) records of involvement in the area.
We apologize to all discussants for not having space
to respond to each of the many points they have
made.

Later in our rejoinder we shall remark on some
points raised by individual discussants, and we
shall finish by pulling together views about the fu-
ture of the interface. First, we mention three areas
of research on which several discussants expressed
views. These areas were implicitly identified by
Amari and, in slightly different form, by Breiman.

e Mathematical modeling of real cognitive pro-
cesses

tion, statisticians do not often tackle the large pre-
diction problems that can often benefit from such
an approach. Finally, the particular fitting (learn-
ing) procedure might have been too greedy to work
effectively with large number of projections.

In contrast, neural network researchers have de-
veloped and applied the PPR model to some dif-
ficult problems with considerable success. In re-
cent years, they have further improved their results
by applying classical statistical techniques such as
regularization, cross-validation and Bayesian mod-
elling. This suggests that both fields should be lis-
tening and learning from each other. Cheng and
Titterington’s paper will help this cause.

¢ Theoretical investigations of networks and neu-
rocomputing

o Development of useful tools for practical pre-
diction and pattern recognition

MODELING OF REAL COGNITIVE PROCESSES

The dominant discussant here is McClelland. He
emphasizes the fact that machine intelligence still
has far to go to emulate many human mental pro-
cesses, a view echoed by Bienenstock and Geman.
McClelland sounds more hopeful than they do that
concepts closely akin to artificial networks, presum-
ably as known today, might prove to be key as-
pects. Furthermore, he suggests that the mechanics
of statistics will be important in the development
of such realistic cognitive machines: first, manip-
ulation of probability models using Bayes’ theorem
could be the way to mimic the brain’s approach to
data analysis (“interpretation”); second, nondeter-
ministic elements seem to be inevitable in modeling
any realistic learning process. Practical realization
of such models does, however, seem to be a daunt-
ing prospect. In the “interpretation” question, for
instance, the equivalent of a prior distribution will
have to include representation of all useful contex-
tual and background information.

However, it seems clear from McClelland’s penul-
timate paragraph that there are important new de-
velopments in areas such as speech processing, even
in irritatingly irregular languages such as English
and even then in the arguably less irregular Amer-
ican version. We are, nevertheless, doubtful about
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regarding pronunciation as necessarily statistical.
Given enough context, in terms of neighboring let-
ters, the correct pronunciation is presumably deter-
mined. Our very naive view would, therefore, be
that a system of general rules with exceptions may
be more natural; but perhaps the necessary com-
plexity renders the approach too unwieldy.

MATHEMATICAL THEORY OF NETWORKS AND
NEUROCOMPUTING

Major contributors under this heading are Amari
and Barron, both of whom feel the lack of theoreti-
cal underpinning of certain aspects of the subject, in
spite of what Amari calls the superficial, if positive,
achievements of ANN models in applications. He
mentions various approaches to the question of esti-
mating generalization error, and he reemphasisizes
the relevance of information geometry and the EM
algorithm in studying and training Boltzmann ma-
chines. Also see Titterington and Anderson (1994).

Barron provides important details of the latest re-
sults in approximation theory, and his discussion
of the case of feed-forward networks with two hid-
den layers is of particular interest. The ability to
bound the risk associated with estimation proce-
dures is of great value, although it appears that
much still needs to be achieved in the practical
area of bounding the risk associated with data-based
model selection criteria: the practitioner wants to
know how well he or she is doing in particular appli-
cations. Barron emphasizes the fact that the scale
of computation time required for network estima-
tion is still a problem and earmarks this area as
“the most important_task for theoretical research in
neural networks.” For instance, he solicits theoreti-
cal work both to tidy up the fuzzy (in a nontechnical
sense) and sometimes contradictory folklore about
techniques such as gradient search and to identify
whether or not associated optimization techniques
can be shown to produce a good solution in a rea-
sonable time.

USEFUL TOOLS FOR PATTERN RECOGNITION

We shall use this heading to draw together the
discussion about the practicalities associated with,
in particular, the use of feed-forward networks in
prediction and classification.

Breiman sets the scene with a clear description of
what he calls the single (hidden) layer feed-forward
network. (In the main paper, of course, we use the
nomenclature “two-layer” for this architecture.) He
highlights the “tinkering and tailoring” approach to
network design and the practical awkwardnesses
encountered when trying to estimate parameters
by optimizing a multi-minima surface. Should one

try several starting points and compare the result-
ing local minima? Should one use a validation set
to determine the stopping point of the algorithm?
Or, should one prevent overfitting by regulariza-
tion? These are the sorts of questions to which
Barron would like some theoretical answers to re-
inforce guidelines formulated from empirical stud-
ies. They are clearly relevant in complicated opti-
mization problems beyond the estimation of param-
eters in feed-forward neural networks. However,
the practice of optimization is clearly a messy bussi-
ness. Ripley issues caveats about the use of a vali-
dation set and comments that the empirical experi-
ences of himself and other investigators are differ-
ent. At best, this suggests that behavior of optimiza-
tion procedures in this area depends more than one
might like on the particular application. Systematic
recommendations may, therefore, be hard to come
by, leading us to fall back on Breiman’s experience-
backed tinkering. To this end, well-designed and
carefully assessed empirical studies such as those
in Ripley’s papers are clearly valuable, especially if
they can include a wide range of really large prob-
lems.

Amari and Ripley highlight the issues of model
complexity and assessment of generalization as im-
portant questions, reinforcing feedback we gleaned
from our spy at the NATO Advanced Study Insti-
tute at Les Arcs. Although these are both theoret-
ical questions, they are clearly related to practice,
and we noted with interest the mention of stepwise
model construction in the contributions by Barron
and, in particular, Breiman. This is surely an im-
portant area for development.

Related to this is the question of the resulting
classifier’s interpretability. This is clearly one area
where Ripley feels that multilayer perceptrons fail
in comparison to some of their competitors. In ad-
dition, he is concerned about the computational de-
mands they make and their complexity relative to
other approaches. Classification trees, in contrast,
have easily interpreted rules. Sometimes, however,
interpretability can be a double-edged sword, es-
pecially if the classification tree is interpreted as
portraying a physical explanation of the differences
among the classes. In multiple regression with
many covariates, many regressions based on differ-
ent subsets of the covariates may provide predictors
of comparable abilities; however, some of the mod-
els may not include covariates that influence the re-
sponse in a direct, physical way. Similarly, many
classification trees are likely to be closely compara-
ble in terms of performance, and there is no guar-
antee that the particular one chosen by a computer
package represents a rule that directly reveals a
physical process.
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As promised earlier, we shall come back to some
general issues at the end, but we now highlight a
few points made by some of the individual discus-
sants.

AMARI

We appreciated the extra historical perspective
provided by Amari. We readily agree that it is
wrong to lay all the blame for the dark period on
Minsky and Papert. We are grateful for the un-
surprising information that some of the basic ideas
appeared in papers that predate the most familiar
references. We too have recently read with interest
the work of Jordan and Jacobs (1993), and we have
a general interest in the various roles that the EM
algorithm plays in this area.

BIENENSTOCK AND GEMAN

The comments of Bienenstock and Geman will
strongly influence the final part of our discussion.
Here, we merely note their discussion of the appeal
of generalization and highlight their warning that
it seems virtually impossible that adequate training
sets will be available for the training of such sophis-
ticated devices as fully successful object-recognizers.
The demands of generalizability are too high. Bi-
enenstock and Geman recommend that future em-
phasis should be on modeling rather than training.
This is somewhat related to Ripley’s point about us-
ing a family of functions well rather than worrying
about which family of functions to choose.

BREIMAN

We apologize to Breiman that we have continued
to use the phase “neural-network community” even
in this rejoinder if only for the fact that we pre-
fer not to write “nonmainstream-statistical commu-
nity”! Breiman and others emphasize the problem-
- oriented approach of the “other” community. One
might be indignant, sad or indifferent about the fact
that they have the “good fortune not-to have any
formal statistical training”. We hope (and assume)
that this is not meant to imply that formally trained
statisticians should not try to get involved!

RIPLEY

We are glad that Ripley has included the formula-
tion of a more general projection-pursuit regression,
and we are grateful for the recent references on var-
ious topics, including handwritten digit recognition.

To the latter, we contribute the recent special is-
sues of Pattern Recognition (March 1993) and Pat-
tern Recognition Letters (April 1993). No doubt, sev-
eral dozen further references relevant to our review
will appear before its publication date: a measure of
the speed of current development at this interface!

TIBSHIRANI

We look forward with great interest to the fruits
of the Hinton-Tibshirani collaboration. We note the
two-way flow of benefits between the two communi-
ties and are mildly surprised that statisticians ap-
pear to have something to gain in more ways than do
neural network researchers. The two points labelled
“1” have bearing on the final part of our rejoinder.
So, in a way, does point 6 about statisticians being
good self-sellers, which echoes the spirit of remarks
of Bienenstock and Geman. At the risk of offend-
ing many nonarchetypal (and other) friends on both
sides of the Atlantic, we should be less surprised
about point 6 if most statisticians were British and
most neural-network researchers non-British. Per-
haps statisticians have just been around longer and
are perceived as nondynamic; or perhaps, yet again,
the title of their profession engenders an image of
unimaginativeness.

STATISTICS AND NEURAL NETWORKS: THE WAY
FORWARD

In this final part of our rejoinder, we try to for-
mulate a perspective of the future synergy, if any,
between research in statistics and neural networks.

The development and application of (artificial)
neural networks has clearly been explosive and ac-
companied by much hype. Hype can cause two types
of reaction. First, it can, like any successful and
energetic advertising campaign, stimulate great in-
terest and many acolytes as a result of appealing
packaging, ambitiously stated goals and apparently
successful applications, as described by Bienenstock
and Geman. On the other hand, hype can be off-
putting. Breiman appears to have been affected this
way initially, and we must confess that an instinc-
tive suspicion of glossy advertising was the stimu-
lus of our early reading in the area a few years ago.
We felt that there must be something of statistical
interest going on but surely nothing fundamentally
novel.

At one level, the conclusion is anticlimactic. In
the context of classification, in particular, neural-
network models provide nonlinear predictors that
are, under certain weak conditions, universal ap-
proximators. However, they both overlap with pro-
cedures that are well known to statisticians and,
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in many applications, seem to have no advantage
over simpler methods. In addition, implementation
of the predictors in practice appears to involve ei-
ther simply recourse to a black-box application or
a development process that is much less systematic
than would satisfy statisticians. We might, there-
fore, decide to refer to the lessons offered by the
comparative experiments of Ripley that they would
be better advised to use different tools, and abandon
the field.

We feel that this would surely be a mistake. While
feed-forward networks, trained by the generalized
delta rule, may not be cure-all classifiers let alone a
realistic prototype for real neural structures, some
of the contexts in which they have been used in-
volve data of great volume and complexity. It is
clear that the frontiers of complexity will continue
to be attacked and, in principle, statisticians ought
to be involved. Perhaps, as Breiman and Tibshirani
indicate, statisticians will have to stray from their
traditional paradigms in order to make meaningful
impact, and many people will, no doubt, be reluc-
tant to do so. Perhaps the paradigms can be suitably
adapted; they are, after all, increasingly permeating
the neural-network literature. In any case, many
of the underlying problems of interest are of deep
practical significance. As Bienenstock and Geman
remark, they are attracting extremely able people
who will inevitably have very clever ideas. It would
be unworthy of statisticians to dismiss all of these
as being too ad hoc, and it would certainly be foolish
to be so blinkered as not to become informed about
and involved in the key developments in this area.

We are pleased that all the discussants were pos-
itive about the involvement of statisticians at the
interface, that McClelland saw the possible benefit
of this to the cognitive science community and that
the others indicated that statisticians would be en-
riched by participating. It seems to us that much of
the challenge of the future has to involve the treat-
ment of very large-scale problems, that whatever de-
velops from current neural-network research should
not be cursorily ignored and that statisticians have
a-contribution to make. ’
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